Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.6 Taylor expansions

Taylor’s Theorem

Let ff\, be suitably differentiable. Then

f(x)=f(a)+f(a)(x-a)+f′′(a)2!(x-a)2++f(n)(a)n!(x-a)n+Rn(x)f(x)=f(a)+f^{\prime}(a)(x-a)+{{f^{\prime\prime}(a)}\over{2!}}(x-a)^{2}+\dots+{% {f^{(n)}(a)}\over{n!}}(x-a)^{n}+R_{n}(x)

where the remainder term satisfies Rn(x)=f(n+1)(c)(x-a)n+1/(n+1)!R_{n}(x)=f^{(n+1)}(c)(x-a)^{n+1}/(n+1)!\, for some cc between aa and xx. If Rn(x)0R_{n}(x)\rightarrow 0 as nn\rightarrow\infty, then

f(x)=f(a)+f(a)(x-a)+f′′(a)2!(x-a)2++f(n)(a)n!(x-a)n+.f(x)=f(a)+f^{\prime}(a)(x-a)+{{f^{\prime\prime}(a)}\over{2!}}(x-a)^{2}+\dots+{% {f^{(n)}(a)}\over{n!}}(x-a)^{n}+\dots.