Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.34 Complex exponentials and the unit circle

Let x=cosθx=\cos\theta and y=sinθy=\sin\theta. For real θ\theta, the point eiθe^{i\theta} lies on the circle with centre zero and radius one in the complex plane, known as the unit circle. As θ\theta increases, eiθe^{i\theta} moves round the circle with unit speed, anti clockwise.

Example (Some compass points)

eiπ/4=1+i2;  eiπ/2=i;  e3πi/4=-1+i2;  eiπ=-1;e^{i\pi/4}={{1+i}\over{\sqrt{2}}};\qquad e^{i\pi/2}=i;\qquad e^{3\pi i/4}={{-1% +i}\over{\sqrt{2}}};\qquad e^{i\pi}=-1;
e5iπ/4=    ;e6iπ/4=    ;e7iπ/4=    ;e8πi/4=    .e^{5i\pi/4}=\qquad\quad;\quad e^{6i\pi/4}=\qquad\quad;\quad e^{7i\pi/4}=\qquad% \quad;\quad e^{8\pi i/4}=\qquad\qquad.