Home page for accesible maths Math 101 Chapter 3: Differentiation

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.6 Leibniz’s rules for derivatives

Theorem

Let ff\, and gg\, be differentiable at aa\,, and CC be a constant. Then the sum and product of these functions are differentiable at aa\, with:

(i)(Cf)(a)=Cf(a)(i)\quad\bigl(Cf\bigr)^{\prime}(a)=Cf^{\prime}(a)
(ii)(f+g)(a)=f(a)+g(a)(ii)\quad\bigl(f+g\bigr)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)
(iii)(fg)(a)=f(a)g(a)+f(a)g(a)(iii)\quad(fg)^{\prime}(a)=f^{\prime}(a)g(a)+f(a)g^{\prime}(a)
(iv)(fg)(a)=f(a)g(a)-f(a)g(a)g(a)2  (g(a)0).(iv)\quad\Bigl({{f}\over{g}}\Bigr)^{\prime}(a)={{f^{\prime}(a)g(a)-f(a)g^{% \prime}(a)}\over{g(a)^{2}}}\qquad(g(a)\neq 0).

If you prefer Leibniz’s notation, then see 3.30.