Home page for accesible maths
Math 101 Chapter 3: Differentiation
3.34 Simple harmonic motion
3.36 A differential equation for hyperbolic functions
Style control - access keys in brackets
Font (2 3)
-
+
Letter spacing (4 5)
-
+
Word spacing (6 7)
-
+
Line spacing (8 9)
-
+
3.35 Solution of simple harmonic motion
Let
f
(
x
)
=
A
cos
β
x
+
B
β
sin
β
x
f(x)=A\cos\beta x+{{B}\over{\beta}}\sin\beta x
then we have
f
′
(
x
)
=
-
β
A
sin
β
x
+
B
cos
β
x
f^{\prime}(x)=-\beta A\sin\beta x+B\cos\beta x
f
′′
(
x
)
=
-
β
2
A
cos
β
x
-
B
β
sin
β
x
f^{\prime\prime}(x)=-\beta^{2}A\cos\beta x-{{B}{\beta}}\sin\beta x
so
f
(
0
)
=
A
f(0)=A
,
f
′
(
0
)
=
B
f^{\prime}(0)=B
and
f
′′
(
x
)
=
-
β
2
f
(
x
)
=
-
k
m
f
(
x
)
.
f^{\prime\prime}(x)=-\beta^{2}f(x)=-{{k}\over{m}}f(x).
Also,
f
f
is periodic since
f
(
x
+
2
π
/
β
)
=
A
cos
β
(
x
+
2
π
/
β
)
+
B
β
sin
β
(
x
+
2
π
/
β
)
f(x+2\pi/\beta)=A\cos\beta(x+2\pi/\beta)+{{B}\over{\beta}}\sin\beta(x+2\pi/\beta)
=
A
cos
β
x
+
B
β
sin
β
x
=
f
(
x
)
.
=A\cos\beta x+{{B}\over{\beta}}\sin\beta x=f(x).