Home page for accesible maths Math 101 Chapter 3: Differentiation

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.35 Solution of simple harmonic motion

Let

f(x)=Acosβx+Bβsinβxf(x)=A\cos\beta x+{{B}\over{\beta}}\sin\beta x

then we have

f(x)=-βAsinβx+Bcosβxf^{\prime}(x)=-\beta A\sin\beta x+B\cos\beta x
f′′(x)=-β2Acosβx-Bβsinβxf^{\prime\prime}(x)=-\beta^{2}A\cos\beta x-{{B}{\beta}}\sin\beta x

so f(0)=Af(0)=A, f(0)=Bf^{\prime}(0)=B and

f′′(x)=-β2f(x)=-kmf(x).f^{\prime\prime}(x)=-\beta^{2}f(x)=-{{k}\over{m}}f(x).

Also, ff is periodic since

f(x+2π/β)=Acosβ(x+2π/β)+Bβsinβ(x+2π/β)f(x+2\pi/\beta)=A\cos\beta(x+2\pi/\beta)+{{B}\over{\beta}}\sin\beta(x+2\pi/\beta)
=Acosβx+Bβsinβx=f(x).=A\cos\beta x+{{B}\over{\beta}}\sin\beta x=f(x).