Home page for accesible maths Math 101 Chapter 3: Differentiation

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.17 Growth and decay differential equation

Proposition

Let k,Ak,A be constants. Then the differential equation

dfdx=kf{{df}\over{dx}}=kf

with inital condition f(0)=Af(0)=A has unique solution f(x)=Aekx.f(x)=Ae^{kx}.

Proof. We verify that this ff works. Indeed f(x)=Aekxf(x)=Ae^{kx} has f(x)=Akekx=kf(x),f^{\prime}(x)=Ake^{kx}=kf(x), and f(0)=Ae0=A.f(0)=Ae^{0}=A. Now let gg be any solution, and consider h(x)=e-kxg(x)h(x)=e^{-kx}g(x). Then h(0)=e0g(0)=A,h(0)=e^{0}g(0)=A, and

h(x)=-ke-kxg(x)+e-kxg(x)=-ke-kxg(x)+ke-kxg(x)=0,h^{\prime}(x)=-ke^{-kx}g(x)+e^{-kx}g^{\prime}(x)=-ke^{-kx}g(x)+ke^{-kx}g(x)=0,

for all xx, so hh is a constant by Lemma 3.12. Hence h(x)=h(0)=Ah(x)=h(0)=A for all xx, and so g(x)=Aekxg(x)=Ae^{kx}.