Home page for accesible maths Math 101 Chapter 3: Differentiation

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.14 Derivative of the exponential function

Example

The derivative of the exponential function is ddxex=ex{{d}\over{dx}}e^{x}=e^{x}.

The key observation is that

ddxxnn!=nxn-1n!=xn-1(n-1)!;{{d}\over{dx}}{{x^{n}}\over{n!}}={{nx^{n-1}}\over{n!}}={{x^{n-1}}\over{(n-1)!}};

so when we differentiate the exponential series term-by-term, we have

ddxex=ddx(1+x+x22!+x33!++xnn!+){{d}\over{dx}}e^{x}={{d}\over{dx}}\Bigl(1+x+{{x^{2}}\over{2!}}+{{x^{3}}\over{3% !}}+\dots+{{x^{n}}\over{n!}}+\dots\Bigr)
=0+dxdx+ddxx22!+ddxx33!++ddxxnn!+{}\qquad=0+{{dx}\over{dx}}+{{d}\over{dx}}{{x^{2}}\over{2!}}+{{d}\over{dx}}{{x^% {3}}\over{3!}}+\dots+{{d}\over{dx}}{{x^{n}}\over{n!}}+\dots
=1+x+x22!++xn-1(n-1)!+=ex.{}\qquad=1+x+{{x^{2}}\over{2!}}+\dots+{{x^{n-1}}\over{(n-1)!}}+\dots=e^{x}.