Home page for accesible maths Math 101 Chapter 2: Functions of a real variable

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.43 Appendix: Double-angle formulae

Replacing yy by -y-y gives more identities. Putting y=xy=x in the second, third and last gives the double-angle formulæ

sin2x=2sinxcosx, cos2x=cos2x-sin2x, tan2x=2tanx1-tan2x,\sin 2x=2\sin x\cos x,~{}\cos 2x=\cos^{2}x-\sin^{2}x,~{}\tan 2x={{2\tan x}% \over{1-\tan^{2}x}},
cos2x=1-2sin2x=2cos2x-1.\cos 2x=1-2\sin^{2}x=2\cos^{2}x-1.

Circles.

When x=costx=\cos t and y=sinty=\sin t, the point (x,y)(x,y) lies on the unit circle in the (x,y)(x,y) plane.