Home page for accesible maths Math 101 Chapter 2: Functions of a real variable

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.38 Power laws

Power Laws

(i) axay=ax+ya^{x}a^{y}=a^{x+y};

(ii) axbx=(ab)xa^{x}b^{x}=(ab)^{x};

(iii) a0=1a^{0}=1;

(iv) a-x=1/axa^{-x}=1/a^{x}; for all a,b>0a,b>0 and xx\in{\mathbb{R}}.

These properties follow easily from the properties of exp and log that we have seen in 2.32 and 2.33.

The formula for powers is also useful for calculating some derivatives.

(ii) We have

axbx=exp(xloga)exp(xlogb)=exp(x(loga+logb))a^{x}b^{x}=\exp(x\log a)\exp(x\log b)=\exp(x(\log a+\log b))
=exp(xlogab)=(ab)x.=\exp(x\log ab)=(ab)^{x}.