(i) this is the definition;
(ii) this is the definition, but note that we need x>0x>0 to define logx\log x.
(iii) Let x=eax=e^{a} and y=eby=e^{b} where a=logxa=\log x and b=logyb=\log y; then
so
(iv) First let x=eax=e^{a}, so a=logx→∞a=\log x\rightarrow\infty as x→∞x\rightarrow\infty.
Next letx→0+x\rightarrow 0+ so 1/x→∞1/x\rightarrow\infty hence