Home page for accesible maths Math 101 Chapter 2: Functions of a real variable

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.36 Proofs of the properties of logs

(i) this is the definition;

(ii) this is the definition, but note that we need x>0x>0 to define logx\log x.

(iii) Let x=eax=e^{a} and y=eby=e^{b} where a=logxa=\log x and b=logyb=\log y; then

xy=eaeb=ea+bxy=e^{a}e^{b}=e^{a+b}

so

log(xy)=a+b=logx+logy.\log(xy)=a+b=\log x+\log y.

(iv) First let x=eax=e^{a}, so a=logxa=\log x\rightarrow\infty as xx\rightarrow\infty.

Next letx0+x\rightarrow 0+ so 1/x1/x\rightarrow\infty hence

logx=-log1/x-.\log x=-\log 1/x\rightarrow-\infty.