Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.16 Triangular numbers

Example

To prove that

1+2+3++n=2-1n(n+1)1+2+3+\dots+n=2^{-1}n(n+1)

for all positive integers nn.

Proof by induction. Let P(n)P(n)\, be the statement

P(n):1+2+3++n=2-1n(n+1).P(n):\quad 1+2+3+\dots+n=2^{-1}n(n+1).

(i) Basis of induction: P(1)P(1)\, asserts that 1=2-1121=2^{-1}\cdot 1\cdot 2\,, which is true.