
Overview — Input modelling for non-stationary discrete-event
simulation

In order to make principled operational decisions, there is a great interest in many areas of
industry in understanding systems that exhibit some form of randomness or uncertainty. Such
systems are generally modelled mathematically, with understanding stemming from performance
measures extrapolated from the model, usually numerical summaries of some characteristic of
interest. An illustrative example we will continually refer to is a hospital accidents and emergency
(A&E) department model, where patients arrive at uncertain and irregular times and queue to
be tended to by staff. Adequate capacity and staffing can be inferred by asking questions such
as “How many beds do we require in order to have leftover capacity 95% of the time?” and
encoding them into performance measures.

Often, unfortunately even for unsophisticated mathematical models, “the desired perfor-
mance measures are intractable or there is no numerical approximation whose error is bounded”1.
A solution is then to simulate the system. For systems that exhibit uncertainty, the field of
stochastic simulation has developed around this requirement.

A simulation has three main components. The first is the input, which represents samples
from an approximation of the random processes governing the system. The second is the model,
specifying rules governing the interactions among the inputs. These produce the third compo-
nent, the output, which represents the performance measure we seek. A simulation may have
several inputs and outputs. For the A&E example, the inputs could be representations of how
patients arrive at the hospital and the length of time they are treated for, the model could
specify how the patients queue before being tended to, and the outputs could be the maximum
number of beds in use at a particular run of the simulation.

Since the inputs come from approximations to these random processes, they carry an inherent
level of error which propagates to the outputs. In applications such as the aforementioned
A&E example, there is a critical need to obtain very representative inputs. If they are not,
and demand is underestimated, then a decision might be made that leaves the department
understaffed or with too few beds, putting patients’ lives at risk. At the same time, we cannot
overestimate demand as it means drawing resources away from other wards. Therefore, capturing
the behaviour of the system inputs accurately is extremely important.

This report focuses on the problem of input modelling, that is modelling and estimating
the sources of randomness that underlie the system. Approaches that attempt to capture the
structure of a commonly used model for discrete arrivals such as ones to the A&E queue, the
Poisson process, are reviewed. While this is a problem with a rich history in statistics, where
the only goal is getting a good estimate and quantifying errors, the added challenge of needing
to generate new arrivals efficiently for simulation purposes makes this an active area of research
in stochastic simulation.

1Page 1 of “Foundations and Methods of Stochastic Simulation” by Barry L. Nelson (Springer, 2013).
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1 Introduction

Simulation is commonly used to replicate the behaviour of mathematically modelled systems that
have analytically intractable performance measures. In industrial applications such as healthcare
or manufacturing, systems that involve discrete events occurring over time are typically simu-
lated. Examples of such systems include call centers or accident and emergency departments,
which are usually formulated using queuing models. Here, individuals arrive at random times,
queue to be served by a set of servers, then leave the service station after a random service time.

Most queuing models assume that arrivals follow a Poisson process with some (possibly time-
varying) rate function. If we would like to simulate the queuing model to gain knowledge about
the system, this rate function will have to be representative of the real behaviour of individuals’
arrivals to the system. This is particularly important in critical applications such as healthcare,
where patients’ lives may be at risk if misinformed decisions are made based on a simulation.

This report focuses on input modelling in simulations where the inputs come from a non-
homogeneous Poisson process. Motivation for work in this area comes from successful applica-
tions such as Pritsker et al. (1995), who use Poisson processes to simulate the United States
organ donation system. While Poisson process rate function estimation is well-established in
statistics, with eminent statistician David Cox working in the area as early as the 1950s, the
added challenge of needing to simulate from the estimated Poisson process means this is an
active area of research in simulation.

The report is organised as follows. Section 2 introduces Poisson processes, with properties
that are relevant for simulation and methods for generating arrivals. Section 3 focuses on
approaches of modelling Poisson processes. Section 4 contains practical remarks and offers
suggestions for future work, and section 5 summarises.

2 The Poisson process

A commonly used mathematical model for discrete event simulation assumes arrivals to the
system follow a homogeneous Poisson process (HPP) with constant arrival rate λ ≥ 0. In this
model, all inter-arrival times are independent and identically distributed exponential random
variables with rate λ and the total number of arrivals N(t) by time t is distributed as

N(t) ∼ Poisson (λt) .

for t ∈ [0, T ]. This assumption of stationarity is, however, unsuitable in most practical appli-
cations of interest. An A&E department, for instance, will have very different patient arrival
rates depending on the time of day, with more frequent arrivals during the day and evening
and sparser ones in the early morning. To convince ourselves that the assumption of station-
arity is wrong, we can collect data on the system and run a statistical test for the stationarity
hypothesis.

For the simulation to be realistic, it is therefore necessary to capture the non-stationarity
of the arrivals, so the next best thing is to instead assume a Poisson process (NHPP) with
non-negative rate function λ(·) generates them. The total arrivals by time t are distributed as

N(t) ∼ Poisson (Λ(t))

for t ∈ [0, T ], where Λ(t) :=
∫ t
0 λ(y)dy is the integrated rate function. Note that the integrated

rate must be a non-negative and non-decreasing function of time.
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2.1 Properties of Poisson processes

There are several properties of Poisson processes that make them attractive for simulation, chief
among which is their mathematical simplicity: they are completely determined by their rate
function λ(·) or, equivalently, the integrated rate function Λ(·). Another is their superposition
property: if N1 and N2 are independent Poisson processes with rate functions λ1(·) and λ2(·),
then the superposed Poisson process N1 +N2 has rate function λ(·) = λ1(·) +λ2(·). Conversely,
a decomposition property holds: if N is Poisson with rate λ(·) = λ1(·) + λ2(·) where λ1,2(·) are
non-negative functions, then N can be decomposed into independent Poisson processes N1, N2

with corresponding rate functions λ1(·), λ2(·).
There is a shortcoming to using Poisson processes for arrival modelling, even if we allow them

to be non-stationary. This is the issue of over- and underdispersion: a Poisson process strongly
assumes that the total number of arrivals in any time interval has the same mean and variance.
This is plainly wrong in practice, with the variance almost always being higher or lower than the
mean, so care must be taken that the application does not deviate too much from the Poisson
assumption before constructing a simulation. Chapter 6 of Law (2014) suggests methods to test
whether a Poisson model is reasonable at all.

2.2 Generating arrivals

Exact samples from a Poisson Process can be drawn by inversion or thinning. Inversion is
the analogue of inversion sampling for univariate distributions, and works as follows. Generate
arrivals t1 < t2 < . . . from a Poisson process with rate constant unit rate. Then Λ−1(t1) <
Λ−1(t2) < . . . are arrivals from a Poisson process with integrated rate function Λ(·). A formal
treatment of inversion can be found in Çinlar (1975). Integrated rate functions that are linear
or exponential can be inverted straightforwardly:

Λ(t) = at+ b =⇒ Λ−1(t) =
t− b
a

,

Λ(t) = exp (at+ b) =⇒ Λ−1(t) =
log t− b

a
.

This naturally extends to rate functions that are piecewise linear or exponential, which makes
sampling from processes with such rates convenient. In addition, Klein and Roberts (1984)
propose an efficient method of generating arrivals by inversion from a Poisson process with a
piecewise linear rate function λ(·), equivalent to a piecewise quadratic integrated rate.

Thinning (Lewis and Shedler, 1979) is the analogue of rejection sampling for univariate
distributions, uses the decomposition property of Poisson processes, and works as follows. Let
λ̃(·) be the rate function of a Poisson process such that λ̃(t) ≥ λ(t) for all t, that is it majorises
the rate function λ(·). Generate arrivals t1 < t2 < . . . from the Poisson process with rate
function λ̃(·) and accept each ti with probability λ(ti)/λ̃(ti). The resulting “thinned” set of
arrivals come from a Poisson process with rate function λ(·). Thinning is particularly effective
if the following two criteria are met. One is the acceptance ratio being as close to 1 as possible
over the domain of λ(·), as rejecting often will slow down arrival generation severely. The other
is the ease of generating arrivals from the majorising process — this is met if for instance λ̃(·)
is piecewise constant, linear or exponential.

3 Modelling rate functions

If the inputs to our discrete-event simulation come from a non-homogeneous Poisson process, our
goal is to estimate either λ(·) or Λ(·) as accurately as possible, as errors in the inputs propagate
to the outputs. At the same time, we are also interested in efficiently generating arrivals from
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the fitted Poisson processes, which greatly limits the type of estimates that can be considered
in practice.

We assume data is collected from m repeats of the process over [0, T ], which could be data
over several days of a queuing system with a period of one day. The rates will be modelled based
on this data, which is either recorded as a sequence of individual arrivals or a sequence of counts
over intervals. The statistical approach to this problem is to assume a (parametric) family of
functions λ(·) ∈ {λθ(·) : θ ∈ Θ} and then estimate by maximum likelihood. We henceforth drop
subscripts in estimates of the rate function to avoid cluttering the notation.

In the interval count case, (0, T ] is divided into M windows (ti−1, ti], each containing ni
arrivals for i ∈ {1, . . . ,M}, where t0 = 0 and tM = T . We assume independence between
windows, an assumption that is justified if they are chosen independently to the arrival process
(e.g. a hospital logging arrivals every two hours). The log-likelihood is, up to a constant,

l(λ) =
M∑
i=1

ni log

(∫ ti

ti−1

λ(u)du

)
−m

∫ T

0
λ(u)du.

If we additionally assume independent parameters across windows (ti−1, ti], maximum likelihood
estimates are any functions that satisfy∫ ti

ti−1

λ(u)du =
ni
m

(1)

for all i ∈ {1, . . . ,M}. Identity (1) forms the basis of many estimates for arrival counts, such
as the basic piecewise constant estimate λ(t) = ni/[m(ti − ti−1)] for t ∈ (ti−1, ti]. Methods that
improve piecewise constant estimates (Chen and Schemiser 2013, 2017) are appropriate for such
a setting and are discussed in more detail in §3.2. Nicol and Leemis (2014) fit a continuous
piecewise linear function for interval counts while maintaining constraint (1), formulating and
solving a quadratic programming problem. We dwell on this no further, focusing instead on the
setting of arrival time data as it allows for more precise modelling.

For the remainder of this report, arrival times are assumed to recorded individually, unless
stated otherwise. If arrival times t1 < . . . < tM in m repeats of [0, T ] are observed, the log-
likelihood is, up to a constant,

l(λ) =

M∑
i=1

log λ(ti)−m
∫ T

0
λ(u)du. (2)

If we would like to encourage our function to have a certain structure, such as a degree of
smoothness, we can penalise this log-likelihood, as in Morgan et al. (2019).

We now begin to consider methods for the arrival time case from the simulation literature,
which can be broadly classified into three categories: exponential models for the rate, piecewise
models for the rate and models for the integrated rate.

3.1 Exponential models for λ(·)

The NHPP rate function λ(·) must be non-negative, and by introducing this constraint the
likelihood optimisation step is made more challenging. One way around this issue is to model
λ(·) = exp(g(·)), which enforces positivity, but also makes this approach unsuitable if the rate
function should be zero over some sub-intervals (such as in a call centre with a lunch break).
The papers of Lewis and Shedler (1976), Lee et al. (1991) and Kuhl et al. (1997) model the
rate function in this way, considering increasingly complex models. These are, in order:

λ(t) = exp

(
r∑

m=0

αmt
m

)
,
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λ(t) = exp

(
r∑

m=0

αmt
m + sin(ωt+ φ)

)
,

λ(t) = exp

(
r∑

m=0

αmt
m +

p∑
k=1

γk sin(ωkt+ φk)

)
.

The polynomial terms are justified by the arbitrarily good approximation that can be obtained
by truncating a Taylor series, while the sine terms attempt to capture any periodicities in the
rate. For fixed values of r and p, parameters are estimated by maximum likelihood, with the
frequencies possibly being known a priori.

Choosing the degree r of the polynomial and the number of trigonometric terms p represents
a statistical model selection problem. Lewis and Shedler (1976) suggest selecting r in a step-wise
fashion, at each step testing the significance of adding in an extra term by a likelihood ratio test
and stopping when the expanded model is rejected twice consecutively. Lee et al. (1991) and
Kuhl et al. (1997) suggest stopping at the first rejection in the above, with the latter authors
suggesting fixing p a priori by e.g. a spectral analysis.

While capable of achieving good approximations, all these approaches are plagued by com-
putational complexity at the optimisation step, as pointed out by Morgan et al. (2019). When
obtaining parameter estimates via maximum likelihood the objective is highly non-convex, so
while Newton’s method is applicable, it will not converge to the true optimum unless started
from a neighbourhood of it. Finding a suitable neighbourhood requires multiple good starting
points, a non-trivial task in and of itself, and for each point an optimisation routine must be
run separately.

Sampling from the fitted process by inversion, as proposed by Kuhl et al. (1997), is im-
practical since Λ−1(·) cannot be computed in closed form. For any arrival time t from the unit
rate Poisson process to be inverted, Λ−1(t) is therefore computed by a bisection search, slowing
down arrival generation severely. While we might justify an increase in computational cost when
fitting our estimate, we will likely want to simulate many arrivals from the fitted process, so
this step should be made as efficient as possible. Lee et al. (1991) propose efficiently sampling
from the second representation by thinning and devise an automated procedure to construct a
tight-fitting piecewise linear cover, making their approach computationally more tractable.

3.2 Piecewise models for λ(·)

Similar to estimates for interval count data, approaches that model λ(·) directly in the arrival
data case often represent it in a piecewise manner. The most widely used such estimate is
the piecewise constant one, which divides (0, T ] into M windows (ti−1, ti] for i ∈ {1, . . . ,M}.
Keeping the same notation as for the interval count case, the estimate is λ(t) = ni/[m(ti− ti−1)]
for t ∈ (ti−1, ti]. Analogous to a histogram, this estimate is sensitive to the window locations
and widths and is highly discontinuous, so it does not capture the rate adequately near edges of
the windows.

Attempting to mend piecewise constant representations, Chen and Schmeiser (2013) make
any given piecewise constant rate smoother by halving each window and shifting the value of each
half. They propose an iterative procedure that repeats this smoothing step while maintaining
constraints such as non-negativity, constant interval means as in (1), and periodicity, showing
that this procedure converges to a continuous function in the limit. The paper of Chen and
Schmeiser (2017) follows a similar idea, transforming a given piecewise constant representation
into a continuous piecewise quadratic one. In the first stage, they formulate the estimate as
the solution of an optimisation problem constrained by interval means (1), continuity and first-
derivative continuity. If the rate estimate is negative at any point, an additional procedure
is run that transforms this estimate into a non-negative one which maintains interval means
and continuity. Both approaches of Chen and Schmeiser work purely on the assumption that a
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smoother rate function is more representative, and so should be used with care as they are not
shown to improve the statistical properties of the original piecewise constant estimate. Sampling
from estimates provided by these methods can be done readily by inversion.

Zheng and Glynn (2017) take a more statistically principled approach and consider fitting a
continuous piecewise linear approximation by maximum likelihood, assuming that the intervals
are known. In the interval count case, they consider both maximum likelihood and ordinary least
squares estimates. Sampling can be done quickly by inversion. Morgan et al. (2019) point out
there is an issue with the assumption of known intervals in practice, and that often a subjective
choice must be made by the modeller when using this procedure in practice.

A very recent contribution by Morgan et al. (2019) considers modelling the rate function as
a cubic spline (a piecewise polynomial, with pieces defined in between knots where it is twice
continuously differentiable), which is then encouraged to be globally smooth by subtracting a
smoothing penalty

θ

∫ T

0
λ′′(u)du

with θ ≥ 0 from log-likelihood (2). They use equidistant knots (in which case the splines are
cardinal) which are fixed a priori and the basis spline decomposition property of cardinal splines,

λ(t) =

N∑
k=1

ckBk(t),

forcing coefficients ck ≥ 0 in order to obtain a non-negative rate estimate. Once the knots are
fixed, these basis splines are completely determined. For a fixed penalty value θ, the coefficients
are determined by a trust region algorithm using a quadratic Taylor series approximation, which
is claimed to perform well in practice although it only has good local convergence properties. The
joint values (c1, . . . , cN , θ) are determined by optimising a regularisation information criterion,
which accounts for the penalty term when determining the most parsimonious model.

An advantage of using cardinal basis splines is that arrival generation can be performed
efficiently. By using the decomposition property of the Poisson process, arrivals generated from
each individual basis component can be pooled together. In addition, all basis splines are
simply translated versions of each other, so only arrivals from the first spline component with
full support in [0, T ] (B4(·) in this case) need to be generated, as they can then be translated
and scaled to construct arrivals from the entire process. Therefore, arrival generation is reduced
to sampling from an NHPP with rate B4(·), which the authors suggest performing by thinning.

Unaddressed issues for this method include ways of selecting the number of knots, construct-
ing a tight-fitting cover to B4(·) that can be efficiently inverted, and ensuring the optimisation
step converges to the global maximum. The authors offer some guidance for the first point,
noting that empirical results indicate more basis splines can offer a more accurate result (a
marginal improvement was observed when doubling the number of basis splines from 23 to 46).

3.3 Models for Λ(·)

A full description of the NHPP can also be obtained by directly modelling the integrated rate
function Λ(·) instead. Leemis (1991) surveyed non-parametric methods for doing this, including
piecewise linear and quadratic constructions. Their linear estimator, which simply interpolates
points (0, 0), (ti, iM/[(M + 1)m]) for all i, and (T,M/m) is statistically consistent and easy to
sample from by inversion. Note this is completely equivalent to a piecewise constant estimator
for the rate function λ(·).

The problem of estimating the integrated rate Λ(·) has received comparatively little attention
in recent years. One reason for this might be that only estimates that are readily invertible are
worth considering, as sampling from a fitted process by thinning requires modelling λ(·) as
well. Another, that estimates of the rate function λ(·) are more interpretable, allowing for a
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qualitative investigation of the behaviour of the process over time. Additionally, it is more
difficult to adequately capture unknown periodic structure when modeling the integrated rate.
Finally, this is a more constrained and therefore difficult problem, as Λ(·) is required to be both
non-negative and increasing.

4 Remarks and extensions

Having reviewed a number of different approaches for modeling the rate of Poisson arrivals, one
might ask how a practitioner would choose among these. If data is particularly plentiful, then
even the simple piecewise constant approach would provide a good enough estimate. Otherwise,
if particularly great accuracy is desired, then the spline approach of Morgan et al. (2019) or the
exponential approach of Lee et al. (1991) would be suitable candidates, at the cost of slower
arrival generation. A good middle ground between accuracy and ease of sampling would be the
piecewise linear approach of Zheng and Glynn (2017) or the quadratic smoothed one of Chen
and Schmeiser (2017).

As far as further work is concerned, this report could grow in several directions. One would
be a simulation study, as in Morgan et al. (2019), where a selection of methods could be
compared and contrasted on estimating known rate functions with different structure, such as
smooth rates with sharp peaks and rates with periods that are unknown a priori. Another
would be to put these methods in the greater context of input uncertainty in simulation, testing
the validity of pointwise confidence intervals and seeing how model misspecification impacts
simulation outputs.

More broadly in simulation research, one direction for further work would be to attempt
to address some of the issues in the aforementioned methods. For the multi-period exponential
model of Kuhl et al. (1997), an automated procedure to construct a piecewise linear cover would
allow for more efficient sampling. For the piecewise linear method of Zheng and Glynn (2017),
an automated procedure for determining the intervals would be useful for practitioners. For
Morgan et al. (2019), a way of constructing a piecewise linear cover for B4(·) and selecting the
number of knots in a principled way are open questions.

In addition, the problem of estimating non-homogeneous non-Poisson processes could be
investigated for use in simulation, following on from Gerhardt and Nelson (2009). These pro-
cesses allow arrivals to be over- or under-dispersed compared to the mean, making them more
realistic for problems that strongly deviate from the Poisson assumption. Note that any of the
aforementioned methods that do not obtain estimates by maximum likelihood can be readily
applied in this context.

Finally, an interesting avenue of research could be to investigate deeper connections between
thinning and rejection sampling. Adaptive rejection sampling (Wild and Gilks, 1993) constructs
an increasingly tighter piecewise exponential cover for efficiently sampling any log-concave dis-
tribution. This idea, together with extensions such as the work of Görür and Teh (2011), could
be used to automatically construct majorising functions for efficient thinning, enabling a wider
class of Poisson rate estimates to be used for simulation.

5 Summary

This report surveyed a number of methods for estimating a nonhomogeneous Poisson process for
use in input generation for stochastic simulation. The first class of methods represents the rate
function as an exponential, the more recent second class represents the rate in a piecewise man-
ner, and the third class models the integrated rate nonparametrically. Finally, suggestions for
future work in this area of simulation were offered, building upon these methods and exploiting
connections with rejection sampling in statistics.
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