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Abstract

Asymptotic expansions, or asymptotic series, play a major role in modern mathe-
matics and physics. However, the subject itself is quite old, dating back from the end
of the 19th century. The general idea of these methods is to represent complicated
functions as sums or products of simpler ones and truncating the series after a finite
number of terms being used, usually when the independent variable tends to a specific
value or infinity. If the finite series seems to give good approximations of the initial
functions, then the question of whether the approximations are satisfactory arises. In-
creasing the number of operations generally, but not always, produces finer results, but
having too many terms can make the calculation hard. That is why we need a method
of classifying how accurate our approximations are. Saying that asymptotic series
deal with problems that are only part of the discussion above is wrong. The question
of what they really are is hard to answer. The reason why we do not often see such
terms in other branches of mathematics is probably because they have already been
named differently, for example Integral Calculus.

The goal of this project is to explore the idea behind the asymptotic series by clas-
sifying them formally. It starts with a review of differential equations and how asymp-
totic methods are necessary to be introduced and continues with chapter two where
several important properties are proved. At the end, a simple example is explored
in detail, namely the Watson’s lemma, which is vital for many other branches of the
asymptotic methods, such as the Laplace’s method for integrals and the method of
steepest descent.
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1 Introduction

Definition 1.1. A mathematical expression is said to be in closed form if it can be written as a
finite number of operations. It may contain constants, variables, “well-known” operations (e.g.,±,
×, ÷), and functions (e.g., nth root, exponent, logarithm, trigonometric functions etc.), but usually
no limits or integrals.

In the theory of differential equations we are very often unable to solve some equations in closed
form. Therefore expressing their solutions in terms of known functions might not possible. We
provide two simple examples:

Example 1.1. Consider the infinite sum:

lim
k→∞

k∑
n=0

x

5n
=
∞∑
n=0

x

5n
= x

∞∑
n=0

(
1

5
)n =

5

4
x. (1.1)

x is there simply to illustrate that the expression can depend to a certain variable. We assume that x
is finite and use the fact that the geometric series is convergent, since 1/5 < 1. Hence, the infinite
series converges to the limit of partial sums: Sk(x) =

∑k
n=0

x
5n

, as k goes to infinity. Therefore,
we can apply properties of convergent sums and take x out of the summation (being the constant
sequence for a fixed x), since it is independent of the summed index. Now, we say that the LHS
of (1.1) is not in closed form because the summation entails an infinite number of elementary
operations. However, the RHS of (1.1) is a linear function of x and is in closed form by Def. 1.1.

Example 1.2. The error function, which is (up to constants) the antiderivative of the elementary
function e−x

2
, is not in closed form:

erf(x) =
2√
π

∫ x

0

e−u
2

du. (1.2)

The reason for this is because the integral cannot be expressed in terms of finite applications of
known functions. It is important to understand that it is not the integral itself that prevents us
from expressing the error function in closed form but the fact that it there does not exist a finite
composition of known functions that gives the value of the integral for a fixed x (as we know from
an elementary course on PDEs).

1.1 Background material

Let us first introduce some useful concepts.

Definition 1.2. Let G be an open set in C and f : G→ C. Then f is analytic (holomorphic) if it is
continuously differentiable on G. [1]
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Lemma 1.1. (Variation of the Estimation lemma) Let C be a contour in C and let f : C → C be a
continuous function on C. Suppose also that C lies within a compact (closed and bounded) subset
of C. Then ‖f‖∞:= supz∈C |f(z)| is achieved for some “z ∈ C”1 and the following holds:∣∣∣ ∫

C

f(z)dz
∣∣∣ ≤ ‖f‖∞ L(C), (1.3)

where L(C) is the length of the contour defined in the usual way by a parametrization function
g : [a, b] → C from some interval [a, b] in R to C (in our case g(a) = g(b) since the contour
is closed), such that x(t) = Re(g(t)) and y(t) = Im(g(t)) have continuous derivatives on each
subinterval (tk, tk+1) for k = 0, .., n− 1, where a = t0 < t1 <, ..., < tn = b and:

L(C) :=
n−1∑
k=0

∫ tk+1

tk

√
(x′(t))2 + (y′(t))2dx ∈ R≥0. (1.4)

The proof of Lem. 1.1 can be found in almost all complex analysis textbooks. It is worth men-
tioning that there is a difference in how we define the length of a contour in complex and real
analysis. We clearly see that the parametrization function g should be continuously differentiable
on every subinterval. In real analysis, however, we would require it to be injective as well. The
reason is because formula (1.4) actually computes the “path” travelled along the curve. In complex
analysis it does not matter if we move forward, backward and forward again along the contour as
integrating in an opposite direction simply produces the same result but with a different sign, hence
the two contributions cancel, so the “path” travelled and the length coincide. In Rn this is clearly
not true, therefore the additional requirement is necessary. We also note that our notation above is
intuitive rather than mathematically correct. For instance, ‖f‖∞ comes from the supremum met-
ric, but we have not defined our metric space. To see why this could be a problem, let us restrict
to real-valued functions and consider the vector space of all continuous functions over the closed
interval [a, b] ⊂ R (i.e. C [a, b]). Then, from an elementary course on metric spaces, we know that
the metric space (C [a, b], d∞) is complete (i.e. every Cauchy sequence of functions from C [a, b]
converges (uniformly) to a function in C [a, b]), where the supremum metric d∞ is defined by:

d∞(f, g) = sup
x∈[a,b]

|f(x)− g(x)|, ∀f, g ∈ C [a, b]. (1.5)

However, the same vector space equipped with the d1 metric defined by:

d1 :=

∫ b

a

|f(x)− g(x)|dx, ∀f, g ∈ C [a, b] (1.6)

is not complete. We say that those two metric spaces (as we have different metrics even though the
set is the same) are not topologically equivalent. To understand why this is the case, please consult

1The quotation marks refer to something said is a sloppy way. In this case, saying that z ∈ C is not mathematically
correct, since the contour also entails its parametrization and using a different one will change the contour, even if
the image points stay the same. We should say that z belongs to the set formed by the image of the parametrization
function, but this is a minor detail, though worth pointing out.
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[8] on page 70 (example 6.36). This means that we have to be careful when working with metric
spaces. For more information about how these concepts are applied to functions defined over the
complex plane, consult [7] (chapter 3 - page 61).

A slight note on the d1 metric. As used above, the metric comes from the L1−norm. However, at
a later stage, we are going to use the d1 metric over Rn, which takes the simpler form:

d1(x, y) :=
n∑
i=1

|xi − yi|, ∀x, y ∈ Rn. (1.7)

In particular, when the space is only R, then the d1 metric is simply the absolute value one (also
called the standard metric).

Theorem 1.1. Let C in C be a contour and let f1, f2, ... be a sequence of functions defined and
continuous on C. We assume that f1, f2, ... uniformly converge to a (continuous) function f. Then:

lim
m→∞

∫
C

fm(z)dz =

∫
C

f(z)dz. (1.8)

Proof. We propose the following proof: By definition of uniform convergence, we have that ∀δ >
0 (δ ∈ R) ∃m0 ∈ N, such that ∀m > m0 (m ∈ N) we have |fm(z) − f(z)| < δ

2
for all “z ∈ C”.

Then, it must hold that supz∈C |fm(z) − f(z)| ≤ δ
2
< δ. Now, let ε > 0 be arbitrary and choose

δ = ε
L(c)

.

Then, consider the following:∣∣∣ ∫
C

fm(z)dz −
∫
C

f(z)dz
∣∣∣ =

∣∣∣ ∫
C

(fm(z)− f(z))dz
∣∣∣ (1.9)

≤ ‖f − g‖∞ L(C) = L(C) sup
z∈C
|fm(z)− f(z)| (by Lem. 1.1) (1.10)

< L(C)δ = L(C)
ε

L(C)
= ε (1.11)

Since ε was arbitrary, the inequality must hold for all ε > 0, which proves the theorem.

Theorem 1.2. Let a0, a1,...∈ C and z0 ∈ C and consider the power series:

P (z) =
∞∑
m=0

am(z − z0)m (1.12)

Then the usual convergence tests (such as ratio test or M-test) apply. Let

r := sup(|z − z0| :
∞∑
m=0

am(z − z0)mconverges) ∈ R≥0 ∪ {∞} (1.13)
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denote the radius of convergence of P(z). Then
∑∞

m=0 am(z − z0)
m converges absolutely and

uniformly on Dr′ (z0) := {z ∈ C| |z − z0| < r
′} for any r

′
< r and diverges for any z ∈ C such

that |z − z0| > r. The limit function P(z) is holomorphic on Dr(z0) and its derivative is:

P
′
(z) =

∞∑
m=0

mam(z − z0)m−1, (1.14)

where the new power series converges on Dr(z0) (i.e. it has the same radius of convergence as the
original power series) and its limit is unique, (Dr(z0) is the open disk of radius r centered at z0).

Proof. Consult reference [1] on page 35 (Prop. 2.5).

Proposition 1.1. A function defined on an open subset S ⊆ C is analytic (holomorphic), if and
only if it is locally given by a convergent power series.

This is in contrast with real functions. It is important to note that the radius of convergence remains
the same if we differentiate the power series even when the functions are defined over the real line.
However, not every differentiable real function can be represented by a power series. A very
famous example of a such function is:

f(x) =

{
0, if x = 0

e−1/x
2
, otherwise.

(1.15)

Therefore, the notions of analyticity (locally given by convergent power series) and differen-
tiability are in general different for real functions.

Let us introduce some important notions of Point-Set Topology.

Definition 1.3. Let X be a set. A family T of subsets of X is called a topology on X if it satisfies
the following conditions:
(1) X ,∅ ∈ T
(2) the union of any collection of sets in T is in T
(3) the intersection of finitely many sets in T is in T

If T is a topology on X, then (X, T ) is called a topological space. The elements of T are called
open sets of (X, T ). In addition to that, any open set containing a point x ∈ X is said to be an
open neighbourhood of x. [8]

Lemma 1.2. A subset S of X is open, if and only if for every x ∈ S there is an open set Sx, such
that x ∈ Sx ⊆ S.

Proof. “⇒ ” If S is open, then choose Sx = S for every x ∈ S.
“ ⇐ ” Conversely, suppose that every point x ∈ S lies within an open subset of S. Let us try to
show that:

S =
⋃

x∈Sx,Sx⊆S

Sx (1.16)
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Let y ∈ S be an arbitrary point in S. Then, by assumption, there exists an open set Sy ⊆ S
containing y. Since

⋃
x∈Sx,Sx⊆S Sx is the union of all such open sets, S ⊆

⋃
x∈Sx,Sx⊆S Sx as this

holds for all y ∈ S. To prove the opposite inclusion, note that Sx ⊆ S, ∀x ∈ S. Hence, so is the
union in (1.16). This proves (1.16) and S is open as a union of open sets by Def. 1.3.

Definition 1.4. Let (X, T ) be a topological space. A family B ⊆ X is said to be a basis of topology
T if every element of T is a union of open sets from B.

Let (X, d) be a metric space. Then, let Bm be the family of open metric balls in X, i.e. all sets
Br(x) = {y ∈ X| d(y, x) < r}, such that x ∈ X and r > 0. We have the following definition:

Definition 1.5. The metric topology on space X is the topology created from the basis Bm and is
denoted by Tm. In this case we say that the metric d induces the topology Tm on X .

It can be shown that the metric topology Tm is indeed a topology in the sense of definition 1.3
(see references).

If we are talking about analytic functions, we need an open neighbourhood (an open set in the
topological sense) over which the power series to converge. Prop. 1.2 then guarantees us that
any analytic function will be differentiable not only at the point around which the power series is
centered, but also on the whole open neighbourhood. However, there exist functions which are
only differentiable at a single point. This means that they will not possess power series anywhere
because a single point cannot represent an open neighbourhood in the metric topology induced by
the absolute value metric.2 The reason why a single point is not an open neighbourhood is because
every open ball around this point will also contain elements different from the point, i.e. there does
not exist an open set around the point contained in the set defined by the point itself.3

Example 1.3. Let f : C→ C, z 7→ z2|z|.

The function is continuous everywhere, but is not differentiable on C\{0}. This can be checked
using the Cauchy-Riemann equations for example. The only point that is left to check differentia-
bility is the origin. From the definition of a derivative, we have:

f
′
(z) = lim

z→0

f(z)− f(0)

z − 0
= lim

z→0

z2|z| − 0

z − 0
= lim

z→0
z|z| = 0 (by arithmetic of limits) (1.17)

Hence f is differentiable at z = 0, but we cannot say if it is more than once differentiable there for
obvious reasons. Since this happens at only one point, there does not exist a power series that will
converge to f(z) for any z ∈ C and therefore it is nowhere analytic.

1.2 Classification of singular points of homogeneous linear equations

As mentioned earlier, often we cannot solve differential equations in closed form. However, the
theory of linear differential equations can usually help us predict the behaviour of the solutions (if

2Which is precisely the topology used for defining the convergence on an open disk in Thm. 1.2.
3Such sets consisting of only one point are called singletons.
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they exist) near a point z0 ,where we suspect that the equation is well behaved (for example does not
blow up), without actually knowing the solutions or even how to find them. It suffices to explore
the coefficient functions of the differential equation in a neighbourhood of z0. A homogeneous
linear differential equation of order n can be written in the form:

y(n)(z) + qn−1(z)y(n−1)(z) + · · ·+ q1(z)y(1)(z) + q0(z)y(z) = 0, (1.18)

where y(k)(z) = dky/dzk. In what follows we assume that the coefficient functions q0(z),...,qn−1(z)
have been defined for complex as well as for real arguments. To continue our local analysis of
(1.18), we start by classifying a point z0 as an ordinary point, a regular singular point, or an irreg-
ular singular point of a homogeneous linear equation.

Definition 1.6. The point z0 (z0 6= ∞) is called an ordinary point of (1.18) if the coefficient
functions q0(z),...,qn−1(z) are all analytic in a neighbourhood of z0 in the complex plane. [6]

Example 1.4.
y
′′′′

= sin(z)y. (1.19)

Every point z0 6= ∞ is an ordinary point of (1.18) because sin(z) is differentiable everywhere
except when |z| → ∞, where it has an essential singularity.

Example 1.5.
y
′
= z2|z|y. (1.20)

There are no ordinary points in the complex plane because z2|z| is nowhere analytic as discussed
above.

It can be proved that all n linearly independent solutions of (1.18) are locally analytic in neighbour-
hoods containing ordinary points. Moreover, as any solution can be expanded in a Taylor series
about an ordinary point z0, y(z) =

∑∞
m=0 am(z − z0)

m, then the radius of convergence of this
series is at least as large as the distance to the nearest singularity of the coefficient functions in the
complex plane:

Theorem 1.3. The location of any singularities that the solutions could have must coincide with
the location of the singularities of the coefficient functions. The solutions of a linear equation
cannot have singularities at any other points. [6]

Definition 1.7. The point z0 (z0 6= ∞) is called a regular singular point of (1.18) if not all of
q0(z),...,qn−1(z) are analytic, but if all of (z − z0)nq0(z), (z − z0)n−1q1(z), ..., (z − z0)qn−1(z) are
analytic in a neighborhood of z0. [6]

Example 1.6.
sin(z − 3)y

′′′
= y (1.21)

There is a regular singular point at z = 3 as (z − 3)3/sin(z − 3) has a removable singularity at
z = 3 and hence, by redefining it at this point, we obtain an analytic function.
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Definition 1.8. The point z0 (z0 6=∞) is called an irregular singular point of (1.18) if it is neither
an ordinary point, nor a regular singular point.

Typically, at an irregular singular point, all solutions exhibit an essential singularity.

1.3 Local behaviour near ordinary points of homogeneous linear equations

In this section we explore the local behaviour of solutions to differential equations which cannot
be expressed in closed form. The general procedure consists of first classifying the point z0 as an
ordinary, a regular singular, or an irregular singular point and then selecting a suitable form for the
series based on this classification. A local series expansion about z0 of a solution to a differential
equation is an example of a perturbation series. A perturbation series is a series in powers of a
small parameter. Here the small parameter is the distance between z and z0. If y(z) is analytic
near z0, then z0 is an ordinary point and the perturbation expansion is a Taylor series in powers of
(z − z0). The nth approximant (the sum of the first n terms of the perturbation expansion) to the
local behavior near an ordinary point becomes a more accurate approximation to the solution as
|z − z0| becomes smaller, or as n increases, or both.

Example 1.7. Local analysis of the Airy equation at 0.

We now restrict to the case of real functions so instead of z as a variable, we use x to avoid
confusion. The Airy equation is given by:

y
′′

= xy. (1.22)

Now, using Def. 1.6 and Thm. 1.3, we can conclude that the solutions to the equation near the point
x = 0 are analytic.4 This implies that there exists a convergent power series centered at x = 0,
such that y(x) =

∑∞
m=0 amx

m. The radius of convergence is infinite, since x is differentiable
everywhere. On the other hand, Thm. 1.2 implies that we can differentiate the power series term
by term and the new power series will converge to y′(x). The same holds for the second derivative
and, by plugging in the power series into the Airy equation, we obtain:

∞∑
m=0

amm(m− 1)xm−2 =
∞∑
m=0

amx
m+1 (1.23)

By shifting the indices, the RHS becomes:
∑∞

m=3 am−3x
m−2. Again, by Thm. 1.2, we know that

the limit to which the power series converge is unique. However, this still does not give us right to
equate the coefficients before the different powers of x, which is what we are looking for.

Proposition 1.2. Let P (z) =
∑∞

m=0 am(z−z0)m be as in Thm. 1.2 and has a radius of convergence
r > 0. Then for m ≥ 0, am are given by the formula below and they are unique:

am =
P (m)(z0)

m!
(1.24)

4Note that this is not quite true, since Def. 1.6 applies to functions defined over the complex plane. In our case, for
an ordinary point, we require only the coefficient function before the highest derivative to be different from 0 at this
point. For the Airy equation, the coefficient function before y

′′
is 1 and hence our initial assumption holds.
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Proof. From Thm. 1.2 we know that we can differentiate the power series term by term and the
new power series will have the same radius of convergence r and converge to P ′(z). Hence, by
induction on m, we conclude that this holds for all m ≥ 0. In particular, the kth derivative of the
power series will converge to:

P (k)(z) =
∞∑
m=k

k(k − 1)...(m− k + 1)am(z − z0)m−k (1.25)

By a straightforward evaluation, we get a0 = P (z0) = P (0)(z0). Using (1.25), we get P (k)(z0) =
k!ak, which proves (1.24).

We now consider the following lemma which will be useful when considering finite sums:

Lemma 1.3. Let S ⊆ C be a non-empty open set. Let i ∈ N ∪ {0} and ti denote the polynomial
function S → C, z 7→ zi (we regard the polynomial functions as part of the vector space of CS

(function space) over the field of complex numbers). Then 1, t, t2, ..., tn are linearly independent in
CS .

Proof. Let a0, a1, ..., an ∈ C, such that a0 + a1t+ ...+ ant
n = 0, where 0 is the zero vector in the

vector space CS . This implies: a0 + a1z+ ...+ anz
n = 0 for all z ∈ S. However, using a corollary

of the fundamental theorem of algebra we know that every polynomial of degree n has exactly n
zeros. The above equation, on the other hand, must hold for all z ∈ S which are “more” than n,
since any non-empty open set in C contains infinitely many elements5. Therefore we can conclude
that a0 = a1 = ... = an = 0 as required.

Let us come back to the Airy equation. We ended up with:

∞∑
m=0

amm(m− 1)xm−2 =
∞∑
m=3

am−3x
m−2 (1.26)

Equating the coefficients of xm−2 in y′′ and xy (by Prop. 1.2) gives:

amm(m− 1) = 0 for m = 0, 1, 2, (1.27)

amm(m− 1) = am−3 for m = 3, 4, ..., (1.28)

which can be solved in closed form only for m = 0, 1, 2. The first equation is already satisfied for
m = 0 and m = 1. Hence, a0 and a1 are arbitrary constants. Also, a2 = 0. The solutions of the
second equation are:

a3m =
a0Γ (2/3)

3mm!3mΓ (m+ 2/3)
, (1.29)

5Again, this is not entirely correct. If we equip C with the discrete topology (which is defined such as all subsets
of C are open - it is the largest possible topology), then even single points are open. However, in all the theory above,
we have always considered C equipped with the standard metric and in all such cases, the claim holds.

10



a3m+1 =
a1Γ (4/3)

3mm!3mΓ (m+ 4/3)
, (1.30)

a3m+2 = 0, (1.31)

where Γ (z) is the gamma function. If we now define c1 = a0Γ (2/3) and c2 = a1Γ (4/3), then the
general solution of the Airy equation is:

y(x) = c1

∞∑
m=0

x3m

9mm!Γ (m+ 2/3)
+ c2

∞∑
m=0

x3m+1

9mm!Γ (m+ 4/3)
. (1.32)

Let us prove that the two series in equation (1.31) are linearly independent. We want to use the
Wronskian and for this purpose define the two series as different functions:

h(x) =
∞∑
m=0

x3m

9mm!Γ (m+ 2/3)
; g(x) =

∞∑
m=0

x3m+1

9mm!Γ (m+ 4/3)
. (1.33)

In order for the Wronskian test to hold, we also need a closed interval containing the point x = 0
(as this the point around which we are expanding the series). Let a, b ∈ R be such that 0 ∈ [a, b].6

The easiest point to evaluate the Wronskian is at x = 0. After easy manipulations we obtain:

h(0) =
1

Γ(2/3)
; g(0) = 0; h

′
(0) = 0; g

′
(0) =

1

Γ(4/3)
. (1.34)

Therefore:

W [h, g](0) =

∣∣∣∣h(0) g(0)
h
′
(0) g

′
(0)

∣∣∣∣ = h(0)g
′
(0)− g(0)h

′
(0) =

1

Γ(2/3)Γ(4/3)
6= 0 (1.35)

Hence, the two series are linearly independent on any closed interval in R containing 0. We
obtained two linearly independent solutions, each multiplied by a constant of integration, even
though we started with only one series! The general solution is approximated for all finite x in
terms of c1 and c2 by a rapidly convergent Taylor expansion. As |x| gets smaller, the expansion
converges faster; fewer terms are required for any desired accuracy. The radii of convergence of
these series are infinite because the Airy equation has no singular points. Note, however, that c1
and c2 must be known before y(x) can be approximated.

It is conventional to define two specific solutions of the Airy equation by [6]:

Ai(x) := 3−2/3
∞∑
m=0

x3m

9mm!Γ (m+ 2/3)
− 3−4/3

∞∑
m=0

x3m+1

9mm!Γ (m+ 4/3)
, (1.36)

Bi(x) := 3−1/6
∞∑
m=0

x3m

9mm!Γ (m+ 2/3)
− 3−5/6

∞∑
m=0

x3m+1

9mm!Γ (m+ 4/3)
. (1.37)

Ai(x) and Bi(x) are called Airy functions. When x is not too large, the Taylor series in (1.36) and
(1.37) give good approximations to the Airy functions. These functions are of primary importance
in perturbative analysis of differential equations. In (1.36) and (1.37) c1 and c2 are chosen so that
Ai(x) is exponentially decreasing as x → +∞ and that Bi(x) oscillates 90o out of phase from
Ai(x) as x→ −∞. It is not trivial to derive these properties from the series (1.36) and (1.37).

6Note that if h, g were not analytic, we cannot apply the Wronskian test, as Peano observed in 1889.
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1.4 Local series expansions about regular singular points of homogeneous
linear equations

In the previous section we saw that Taylor series are a good way to represent local behaviour of
solutions to a differential equation near ordinary points. However, this procedure will break down
if we apply it to regular singular points. It can be shown that if x0 is a regular singular point of
(1.18), at least one of the solutions of (1.18) will be of the form:

y(z) = (z − z0)αH(z), (1.38)

where H(z) is analytic at z0. The RHS of (1.38) is called Frobenius series and the number
α(α 6= 0) is called an indicial exponent. The Frobenius method allows us to find the solutions
of homogeneous linear differential equations, but we are not going to discuss it here. Consult
reference [6] for more information.

2 Asymptotic Series

This section starts with introducing the O − o symbols. We first note that when dealing with
functions, the independent variable can be real or complex. More generally, it will belong to a
so-called Hausdorff space:

Definition 2.1. A topological space (X, T ) (as in Def. 1.3) is Hausdorff if any two distinct points
in X have disjoint neighbourhoods. In other words, if x, y ∈ X and x 6= y, then there exist
U ,V ∈ T , such that x ∈ U , y ∈ V and U ∩ V = ∅.

The usefulness of the Hausdorff condition is that it allows us to distinguish two different points in a
given space. There are many spaces that are not Hausdorff. For example, let a set X be non-empty
and such that X has at least two distinct points in it. If X is equipped with the indiscrete topology
{∅, X}, then the resulting space is not Hausdorff. This topology consists of only two elements, the
empty set and X itself and one can easily show that it satisfies Def. 1.3. It is also the “smallest”
topology, while the discrete one is the “largest” possible. Mathematically, we should say that the
indiscrete topology is coarser (i.e. contains fewer open sets) than the discrete topology. Indeed,
if x, y ∈ X, x 6= y, then any open neighbourhood containing either of these points has to be non-
empty and the only such set in this topological space is X , but it is not disjoint from itself. While
the indiscrete topology is slightly more abstract7, the following proposition will give us an infinite
number of useful examples:

Proposition 2.1. Any metric space (X, d) endowed with the metric topology Tm (as in Def. 1.5),
is Hausdorff.

Proof. Consult reference [8].
7The abstraction comes from the fact this topology is not induced by a metric, as one can easily show.
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In particular, the “hidden” metric topology induced by the absolute value metric in Thm. 1.2
satisfies the Hausdorff condition. The notion of a Hausdorff space is introduced here only for
completeness and for more information refer to [3]. We are now going to focus on the applications
of these concepts with simple examples.

2.1 The O-symbol

Definition 2.2. Let (X, T ) be a Hausdorff topological space and S ⊆ X . Then for any real- or
complex-valued functions of x defined when x ∈ S (for example ϕ, ζ), we write ϕ = O(ζ) in S
if there exists a positive constant A, independent of x, such that |ϕ| ≤ A|ζ| for all x ∈ S. We
also write ϕ = O(ζ) as x → x0 if there exists a positive constant A and an open neighbourhood
U ⊆ X of x0, such that |ϕ| ≤ A|ζ| for all x ∈ TU , where TU is the subspace (induced) topology
(i.e. TU = {U ∩ S| S ∈ T }). [3]

The definition is taken from [3], but is rather abstract and confusing. In order to explain it, we first
note the “abuse” of the equality sign. Let x ∈ S be arbitrary. If:

ϕ = O(ζ) (2.1)

holds, then obviously this implies that 3ϕ = O(ζ). The reason for this is that the constant A,
though independent of the variable x, is not unique (i.e. we can always choose a bigger constant,
such that equation (2.1) and 3|ϕ(x)| ≤ A∗|ζ(x)| are both satisfied, where A∗ is the new modified
constant). This would imply that 3ϕ(x) = ϕ(x) for all x ∈ S, since x was arbitrary. This is
true only for the constant 0 function, which will make the definition of the O symbol useless. To
illustrate what is meant by the equality sign here, we provide the following instructive examples.

Imagine that instead of using the “less than” sign “ < ”, we define a new operation “ = L” with
the same meaning. Then one can write: 4 = L(7), as 4 is less than 7. We can extend this to
functions as well: sin(x) = L(x), for all x satisfying 0 = L(x). Continuing in this way, we can
write: 4 = L(7), so 6 − 2 = L(7) and hence 6 = 2 + L(7), or even something in the form:
L(2) + L(9) = L(16). The last “equality” suggests that the sum of an element less than 2 and
another element less than 9, is less than 16, which is true. The O symbol is used in the same
manner [2]. Now consider the “equation”:

Example 2.1.

O(ln (x)) +O(ln (xn)) = O(ln (x)) when x→∞, n ∈ R and 0 ≤ n ≤ N, (2.2)

whereN is a fixed finite number. We are clearly considering the topological space (R, Tm) induced
by the d18 metric, and hence it is automatically Hausdorff by Prop. 2.1. The reader might also no-
tice that we have put the independent variable in (2.2), but not in (2.1). It is a matter of convention

8The d1 metric used in the first section was over the set of continuous functions. When the set is just the real
numbers, the d1 metric corresponds to the absolute value one.
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and in certain cases we include the independent variable for the sake of clarity. Now, (2.2) means
that for any pair of functions h, g, such that:

h(x) = O(ln (x)) (x→∞), g(x) = O(ln (xn)) (x→∞), (2.3)

we have:
h(x) + g(x) = O(ln (x)) (2.4)

Equation9 (2.2) holds for all n in the closed interval [0, N ]. The example is trivial as we simply
need to use properties of the real logarithmic function to bring n before it in order to prove it, but it
is important to realize that we need to take arbitrary functions that satisfy (2.3) and show that their
sum satisfies (2.4). Hence, we can generalize (2.4) to (2.2). Some other simple examples could be:

O(x2) +O(x7) = O(x7), (x→∞), (2.5)

eO(N) = O(M), (−∞ < x <∞), with N,M ∈ R>0, (2.6)

eO(x) = eO(x2), (x→∞). (2.7)

Equations (2.5) and (2.7) are trivial. (2.6) it might look strange as the independent variable is
missing. The explanation is given at the end of this section. We shall now discuss a few simple
concepts.

Let ϕ and ζ be as in definition 2.2 and assume that ϕ = O(ζ) is true, but ζ = O(ϕ) is false. If
there is a third function f , defined over the same topological space, satisfying:

f = O(ϕ), (2.8)

then clearly it also satisfies:
f = O(ζ). (2.9)

We say that equation (2.8) is a refinement of (2.9). An equation of the form (2.8) is called the best
refinement if it cannot be refined, i.e. there exist positive constants a and A such that a|ϕ(x)| ≤
|f(x)| ≤ A|ϕ(x)|. We suggest the following example:

Example 2.2.

Nx+Mx cos(ln(x)) = O(x), (x→∞) with N,M ∈ R>0 and N > M. (2.10)

We cannot refine (2.10) as the LHS of it lies between (N −M)x and (N + M)x. In some cases
the best refinement might not exist. Consider for n ∈ N:

e−x = O(x−n), (x→∞). (2.11)

(2.11) is obviously true, but for no value of n is the best refinement, since e−x = O(x−n−1) is
always a better one. We now focus on the notion of uniformity, which in some ways resembles
uniform convergence as we know from Analysis. Let us start once again with an example.

9I drop the quotation marks, which refer to something said in a sloppy way, but the reader should keep in mind that
we are not actually dealing with equations.
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Example 2.3. Consider n arbitrary bounded functions ζi, i = 1, 2, .., n as before defined over a
subset S of a Hausdorff topological space, where n ∈ N, and let l be a positive real number. Then,
we have: ( n∑

i=1

ζi(x)
)l

=
n∑
i=1

O(ζ li(x)), ∀x ∈ S. (2.12)

Proof. To prove this, try to bound the modulus of the LHS of (2.12). For example,∣∣∣( n∑
i=1

ζi(x)
)l∣∣∣ ≤ ( n∑

i=1

|ζi(x)|
)l
≤ [nmax (|ζ1(x)|, |ζ2(x)|, ..., |ζn(x)|)]l (2.13)

≤ nl max (|ζ1(x)|l, |ζ2(x)|l, ..., |ζn(x)|l) ≤ nl
( n∑
i=1

|ζi(x)|l
)
. (2.14)

(2.13) and (2.14) suggest that we have found constants A1, A2, ..., An such that:∣∣∣( n∑
i=1

ζi(x)
)l∣∣∣ ≤ n∑

i=1

Ai|ζi(x)|l, ∀x ∈ S, (2.15)

where we stress that the constants depend on l (in particular we can set Ai = nl, ∀i = 1, 2, ..., n)
and hence (2.12) is not uniform with respect to l or at least that we have not proved the existence
of constants independent of l.

However, let us take a look at the following example:

Example 2.4. ( l

x2 + l2

)l
= O

( 1

xl

)
, (1 < x <∞), l > 0. (2.16)

We claim that the constant involved in this example can be chosen independently of l. To see this,
note that x2 + l2 = (x− l)2 + 2lx ≥ 2kl and hence:( l

x2 + l2

)l
≤ 1

(2x)l
. (2.17)

Since 2−l < 1, ∀l > 0, then we can choose the constant in (2.16) to be 1, such that the expression
holds uniformly with respect to l. We can also take a different point of view and consider the
function on the LHS of (2.16) as a function of two variables, namely x and l. Then, if we plot the
LHS of (2.16) over a subset of the x− l plane, i.e. 1 < x <∞, l > 0, we can bound its height by
a constant multiple of the function 1/xl. We proceed with some basic, but important properties of
the O symbol.

Proposition 2.2. Let {ϕi| i = 1, 2, ...} and {ζi| i = 1, 2, ...} be finite sets (with the same number of
elements) of functions as in Def. 2.2, such that ϕi = O(ζi) for all i. Then, for any set of constants
ai, the following holds: ∑

i

aiϕi = O(
∑
i

aiζi) (2.18)
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The proof is given in reference [3]. However, we have to be careful, as in some cases the value to
which the independent variable tends to is crucial. For instance, x2 = O(x) when x → 0 is true,
but clearly fails when x→∞, as one can easily show that x2 is not Lipschitz for all x.

Proposition 2.3. Let ϕi, ζi be the same as in Prop. 2.2. Then, we have:∏
ϕi = O(

∏
ζi) (2.19)

Proof. Let x ∈ S (where S is as in Def. 2.2) be arbitrary. Then, by assumption, for every i there
exists a positive constant Ai, such that |ϕi(x)| ≤ Ai|ζi(x)|. Therefore, we have:∏

|ϕi(x)| ≤
∏

Ai|ζi(x)| =
∏

Ai
∏
|ζi(x)| = A

∏
|ζi(x)|, (2.20)

where A :=
∏
Ai is finite (as Ai <∞ for all i). Since x was arbitrary, (2.20) holds for all x ∈ S,

hence proving (2.19).

At this stage the reader should notice something peculiar about our proofs. Sometimes, we only
take an arbitrary x at the start and try to prove our claim for all x in a given set, but in other cases
we take an arbitrary function instead. The reason for this is because theO symbol actually refers to
classes of functions rather than the individual functions themselves. For example, when we write:
O(ln (x)) +O(ln (xn)) = O(ln (x)) when x→∞, we mean that the class O(ln (x)) +O(ln (xn))
is contained in the class O(ln (x)). That is why we need to choose arbitrary members of the class
on the LHS of (2.2) and we did not need an arbitrary x as we assumed that x→∞ (i.e. we sort of
know about which x′s we are talking about). This does not mean that we cannot refer to a single
function when using the O symbol. In Props. 2.2 and 2.3, we had a condition for each of ϕi rather
than a condition for classes of functions. On the other hand, equation (2.6) clearly refers to classes
of functions. In general, it should be clear from the example whether we deal with classes or single
functions.

2.2 The o-symbol

Definition 2.3. Let (X, d) be a metric space and S, x, ϕ and ζ be as in Def. 2.2. Then, we write:

ϕ = o(ζ) as x→ x0, (2.21)

if for every ε > 0, there exists an open neighbourhood Uε ⊆ X of x0 (i.e. an open ball with radius
ε around x0), such that |ϕ| ≤ ε|ζ| for all x ∈ TUε .

Note that we do not actually require x0 to belong to S. The definition merely states the existence
of an open neighbourhood around x0 that has a non-empty intersection with S. Before providing
an example, we define what the closure of a set means:

Definition 2.4. A point x in a topological space (X, T ) is called an adherent point of a subset
S ⊂ X , if every open neighbourhood U ⊆ X , containing x, has a non-empty intersection with S.
The set of all adherent points of S is called the closure of S and is denoted by S.
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For example, (0, 1/
√

5) = [0, 1/
√

5], but neither 0, nor 1/
√

5 belong to (0, 1/
√

5). In particular,
if we take x0 = 0 we can construct a sequence of points xn ∈ (0, 1/

√
5) that lie within open

balls of radius 1/n, n ∈ N (i.e. xn ∈ B1/n(0)) and approach 0. In this case the metric space is
not complete as the sequence converges in R to 0 (hence, it is Cauchy), but does not converge in
(0, 1/

√
5). It is important to note that we do not require n ≥ 3 as the reader might think, since√

5 ≈ 2.24, because there is nothing in the definition to prevent this intersection to be the whole
set S (in our case S = (0, 1/

√
5)). Therefore, we can still write something of the form:10

e−
1
x = o(x), as x→ 0+

11, (2.22)

even if we exclude the zero in our space. To decode the abstraction above, read the o-symbol as
“something that tends to zero, multiplied by”. In practice, if we write ϕ = o(ζ), as x → x0,
we mean the following:

lim
x→x0

ϕ(x)

ζ(x)
= 0. (2.23)

To see how this works with our example, compute a limit as in (2.23):

lim
x→0+

e−
1
x

x
. (2.24)

Note that, if we let x tend to 0 from both sides, the limit will not exist. A standard trick at this
stage is to make a change of variables, so let u := 1/x and hence u → ∞ as x → 0+. We are
now in a position to apply L’Hôpital’s rule, since, no matter how big u is, we can always find an
open neighbourhood containing u where the limit exists, which was not possible in (2.24) around
the zero. Therefore:

lim
x→0+

e−
1
x

x
= lim

u→∞
ue−u = lim

u→∞

u

eu
= 0, (2.25)

as required. In asymptotic analysis, the o − symbol is less useful than the O − symbol, since it
suppresses a lot more information. We are usually interested in how fast something approaches
zero rather than simply that it goes to zero.

2.3 Asymptotic series

Often, we have a situation where a given function ϕ, as x → ∞, has an infinite sequence of
O − formulas, such that each n+ 1 formula is an improvement upon the nth one. Let us assume
that the sequence is of the following type [2]:

Consider the sequence of linearly independent functions (ζ0, ζ1, ζ2...) satisfying:

ζ1 = o(ζ0), ζ2 = o(ζ1), ... as x→∞, (2.26)
10It is not surprising that the o symbol refers to classes of functions (as the big O), but in this example we are talking

about specific members of the class, i.e. e−
1
x and x.

11Formally, I should first define a function t : R→ R; x 7→ x and write o(t), rather than o(x). The same holds for
the whole chapters 2 and 3, but as we said earlier, it is a matter of convention and clarity.
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and there is a sequence of constants (a0, a1, a2, ...), such that we have the followingO−formulas:



ϕ = O(ζ0) as x→∞
ϕ(x) = a0ζ0(x) +O(ζ1) as x→∞
ϕ(x) = a0ζ0(x) + a1ζ1(x) +O(ζ2) as x→∞
...........................................................................

ϕ(x) = a0ζ0(x) + a1ζ1(x) + ...+ an−1ζn−1(x) +O(ζn) as x→∞
...........................................................................

(2.27)

Now, we can ask ourselves if each consecutive formula is an improvement of the previous one.
Take for example the first two. We want to show that a0ζ0(x) +O(ζ1) = O(ζ0) as x→∞.

Proof. We suggest the following proof. Let h be an arbitrary function satisfying12 h = O(ζ1) as
x→∞. This means that there exists a positive constantA such that h(x) ≤ Aζ1(x) when x→∞.
Now, consider the limit:

lim
x→∞

h(x)

1ζ0(x)
≤ lim

x→∞

Aζ1(x)

ζ0(x)
= A lim

x→∞

ζ1(x)

ζ0(x)
= 0, (2.28)

by arithmetics of limits and the assumption that ζ1 = o(ζ0) as x → ∞. Since this holds for all
such functions h, we can write: O(ζ1) = o(1)ζ0(x) as x→∞ (hence the 1 in the denominator of
(2.28)). Therefore, we have:

a0ζ0(x) +O(ζ1) = a0ζ0(x) + o(1)ζ0(x) = (a0 + o(1))ζ0(x) = O(ζ0) as x→∞, (2.29)

as required.

Accordingly, the third formula improves the second one and so on. In order to represent the whole
sequence (2.27) with a single formula, we use the following notation:

Definition 2.5. An asymptotic series (expansion) of ϕ(x) to N terms, is said to be the RHS of
(2.30):

ϕ(x) =
N∑
n=0

anζn(x) +O(ζN+1), x→∞. (2.30)

Theorem 2.1. The coefficients an in (2.30) are unique for a given ϕ(x).

Proof. We prove this by contradiction. Assume that there is another set of constants {b0, b1, ..., bN}
such that an 6= bn for at least one n ∈ {0, 1, ..., N} and:

ϕ(x) =
N∑
n=0

bnζn(x) +O(ζN+1), x→∞. (2.31)

12I omit saying that each function should be defined over a Hausdorff topological space, since almost all examples
are trivially defined over the real line with the standard metric, but the reader should not lose track of where we started
from.
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Let m be the smallest number such that am 6= bm. m could be zero, N or anything in-between. If
we now subtract (2.31) from (2.30), we obtain:

0 = (am − bm)ζm(x) +O(ζm+1), x→∞. (2.32)

Since am 6= bm by assumption, we can divide through bm − am, which implies:

ζm = O(ζm+1). (2.33)

This is a contradiction as ζm+1 = o(ζm) by assumption in (2.26).

Sometimes, it could turn out that the coefficients an are all zero. We suggest the following limit:

lim
x→∞

e−x

ln (1 + 1/xn)
, n ∈ N. (2.34)

Both functions in the numerator and denominator are well-defined and tend to zero as x→∞, so
we can apply the L’Hôpital’s rule:

lim
x→∞

e−x

ln (1 + 1/xn)
= lim

x→∞

(1 + x−n)e−x

nx−n−1
= lim

x→∞

e−x

nx−n−1
+ lim

x→∞

e−x

nx−1
= 0, (2.35)

which implies that e−x = O(ln (1 + 1/xn)) as x→∞ for all n ∈ N. Therefore:

e−x = 0 · ln (2) + 0 · ln (1 + 1/x) + · · ·+ 0 · ln (1 + 1/xN) +O(ln (1 + 1/xN+1)), (2.36)

where we consider the expansion of the first N terms. It is interesting to note that convergence of
power series, as we know them from real or complex analysis, is not the same as convergence of
asymptotic series. The difference is that if we are given a power series, we form a mathematical
statement for a given x (the independent variable) when n → ∞ (the index over which we sum
the terms). On the other hand, if we have an asymptotic series, we form a statement about a given
n when x → ∞ (for example). Also, even if the asymptotic series converges, it does not need to
converge to the initial function. A counterexample is (2.36), as e−x 6= 0, ∀x ∈ R.

2.4 Operations on asymptotic series

We restrict our attention to asymptotic series of the form:

N∑
n=0

anx
n +O(xN+1), as x→ 0. (2.37)

The series (2.37) is called a formal power series [2]. Note that Lem. 1.3 justifies that (2.37)
is an asymptotic series, because we required the summed functions to be linearly independent,
and hence the above discussion holds for formal series as well. For these series, addition and

19



multiplication are defined in the usual way. There also exists a unit element, denoted by I , which
is obviously of the form: 1 + 0 · x+ 0 · x2 + · · · . Hence, the set of all formal power series forms
a commutative ring, but for the purposes of this discussion we will not delve into commutative
algebra. Instead, we prove some simple properties:

Theorem 2.2. Suppose that there exists a formal power series representing a function ϕ(x), i.e.:

ϕ(x) =
N−1∑
n=0

anx
n +O(xN), as x→ 0, (2.38)

and that
∫ x
0
ϕ(u)du exists for all sufficiently small x. Then, we can integrate the asymptotic series

term by term: ∫ x

0

ϕ(u)du =
N−1∑
n=0

an
n+ 1

xn+1 +O(xN+1), as x→ 0. (2.39)

Proof. Let N be given and fixed. Then, by definition of the O − symbol, there exist positive
constants A and a such that:∣∣∣ϕ(u)−

N−1∑
n=0

anu
n
∣∣∣ ≤ A|u|N , when |u| < a. (2.40)

Now, if |x| < a, consider the modulus of the difference between the integral and the sum in (2.39)
with x→ 0+ (the case x→ 0− follows in a similar fashion):

∣∣∣ ∫ x

0

ϕ(u)du−
N−1∑
n=0

an
n+ 1

xn+1
∣∣∣ =

∣∣∣ ∫ x

0

ϕ(u)du−
∫ x

0

N−1∑
n=0

anu
ndu
∣∣∣ = (2.41)

∣∣∣ ∫ x

0

(
ϕ(u)−

N−1∑
n=0

anu
n
)
du
∣∣∣ ≤ ∫ x

0

∣∣∣ϕ(u)−
N−1∑
n=0

anu
n
∣∣∣du ≤ ∫ x

0

A|u|Ndu = (2.42)

A

∫ x

0

uNdu =
A

N + 1
xN+1 =

A

N + 1
|x|N+1 = O(xN+1). (2.43)

In (2.41) we interchanged the integral and the sum, as the series consists of finitely many terms.
In (2.42) the monotonicity of the integral and (2.40) were used. In (2.43) we used that x and u are
bigger than zero by assumption. This proves the theorem.

Theorem 2.3. Assume that:

ϕ(x) =
N∑
n=0

anx
n +O(xN+1), (x→ 0); ϕ

′
(x) =

N−1∑
n=0

bnx
n +O(xN), (x→ 0), (2.44)

for some constants bn. Then bn = (n+ 1)an+1, as expected by termwise differentiation.
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Proof. Assume again that x→ 0+. Let N ≥ 1 be fixed. Define a new function hN , such that:

hN(x) := ϕ(x)−
N−1∑
n=0

bn
n+ 1

xn+1. (2.45)

Now, since ϕ is differentiable and the sum has finitely many terms, then hN is also differentiable
⇒ h

′
N(x) = O(xN) (x→ 0)13. We can now apply the Mean Value Theorem on the closed interval

[0, x]. This implies that there exists a point c ∈ (0, x), such that: hN(x)−hN(0) = h
′
N(c)(x−0) =

O(xN+1). Since N was arbitrary, we conclude that:

hN(x)− hN(0) = ϕ(x)−
N−1∑
n=0

bn
n+ 1

xn+1 − ϕ(0) = O(xN+1), ∀N ≥ 1⇒ (2.46)

ϕ(x) = ϕ(0)(= a0) +
N−1∑
n=0

bn
n+ 1

xn+1 +O(xN+1). (2.47)

The rest follows from relabelling the indices and Thm. 2.1, which assures uniqueness of the
coefficients.

Let us now focus for a bit on the differences between power series and asymptotic series:

Proposition 2.4. Let P(z) be a convergent power series as in Thm. 1.2. Then it is asymptotic.

Proof. Part of the proof is given in [5], but we extend it here because it is instructive. Let P (z) =∑∞
m=0 am(z− z0)m be a convergent power series and let ρ ∈ R, such that ρ ∈ (r

′
, r), where r′ and

r are as in Thm. 1.2. Since P (z) converges, it is bounded, hence there exists a positive number A′ ,
such that |am||z − z0|m < |am|ρm < A

′
, ∀m ∈ N ∪ {0} with the assumption that |z − z0| ≤ r

′ .
Therefore, excluding the first N terms of the infinite sum, we have:∣∣∣ ∞∑

m=N

am(z − z0)m
∣∣∣ ≤ ∞∑

m=N

|am||z − z0|m =
∞∑

m=N

|am|ρm
|z − z0|m

ρm
< A

′
∞∑

m=N

|z − z0|m

ρm
(2.48)

= A
′
( ∞∑
m=0

|z − z0|m

ρm
−

N−1∑
m=0

|z − z0|m

ρm

)
= A

′
( ρ

ρ− |z − z0|
−
ρ(1− |z−z0|

N

ρN
)

ρ− |z − z0|

)
(2.49)

=
A′ρ1−N |z − z0|N

ρ− |z − z0|
≤ A′ρ1−N

ρ− r′
|z − z0|N = O(|z − z0|N), (2.50)

where we used convergence of the geometric series, since |z − z0|/ρ < 1 by assumption. Hence:

∞∑
m=0

am(z − z0)m =
N−1∑
m=0

am(z − z0)m +O(|z − z0|N), (2.51)

as required.

13To see this, take the sum on the LHS in the second equation of (2.44), one thus obtains h
′

N (x).
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Now, Thm. 1.2 says that we can differentiate the power series and the resultant series will also
be convergent, and hence asymptotic as well. This is not true for asymptotic series. In Thm. 2.3
we also had to assume that derivative of the initial function exists and that we can form another
asymptotic series to represent it. This is particularly apparent in the proofs for uniqueness of the
coefficients for power series and asymptotic series. In Prop. 1.2 differentiation of the power series
is justified, but not the case of asymptotic series, so we had to resort to a different technique in
Thm. 2.1. Another key difference is that if we want to integrate a complex power series term
by term, we need to make sure that it is (uniformly) convergent on an open neighbourhood in the
complex plane, following Thm. 1.1. However, in Thm. 2.2 we did not impose such a condition.
This is interesting as it says that the asymptotic series could be even divergent, but as long as the
integral of the function it represents exists, we could still integrate it term by term, as essentially
we are dealing with only finitely many terms of the series (as in the proof of Thm. 2.2). This means
that asymptotic series are a lot more flexible than the power series, which are particularly rigid.

Up to know we have proved some properties of the asymptotic series, but we never had a formula
of how to compute the coefficients an in (2.37). Let us first rewrite (2.37) in a different form. Since
x tends to 0, we clearly have that xN+1 = o(xN), (x → 0)14. We want to prove that O(xN+1) =
o(xN), (x → 0). Indeed, assume that h is a function that satisfies h(x) = O(xN+1), (x → 0).
Then, there exists a positive constant A, such that |h(x)| ≤ A|xN+1|, (x→ 0). Consider the limit:

lim
x→0

|h(x)|
|xN |

≤ lim
x→0

A|x|N+1

|x|N
= A lim

x→0
|x| = 0, (2.52)

which proves the claim. Therefore, if ϕ(x) is represented by a formal power series, we can write:

ϕ(x) =
N∑
n=0

anx
n + o(xN), (x→ 0). (2.53)

In particular, by repeating the same argument, but for the general asymptotic series in Def. 2.5,
and by replacing (x → ∞) with (x → x0), where x0 is as in Def. 2.215, we arrive at a slightly
different form of the asymptotic series:

Definition 2.6. We say that the RHS of (2.54) is an asymptotic expansion to N terms of ϕ(x):

ϕ(x) =
N∑
n=0

anζn(x) + o(ζN), x→ x0. (2.54)

Both definitions 2.5 and 2.6 are useful. Which definition we use depends on the type of problem
we have. We are now in a position to find a general formula for the coefficients an.

Theorem 2.4. The coefficients an, (n ≥ 1) in (2.54) are given by:

an = lim
x→x0

(
ϕ(x)−

∑n−1
m=0 amζm(x)

)
ζn(x)

. (2.55)

14This can also be seen from (2.26).
15(x→∞) was mainly chosen for convenience, but everything can easily be generalized for an arbitrary x0.
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Proof. The proof is very easy. Note that we changed the summed index from n to m simply for
convenience. By definition of the o symbol, we have that:

0 = lim
x→x0

(
ϕ(x)−

∑n
m=0 amζm(x)

)
ζn(x)

= lim
x→x0

(
ϕ(x)−

∑n−1
n=0 amζm(x)

)
ζn(x)

− an. (2.56)

Rearranging (2.56), we arrive at (2.55), as required.

We can use (2.55) and (2.56) to prove uniqueness of the coefficients an as well. For this purpose,
we need to first find a0, expressed as a simple limit of two known function, namely ϕ and ζ0, which
we can deduce from (2.56) by plugging n = 0 into the first part. This proves the uniqueness of a0
as the limit is unique. Then, using (2.55), we can find the next coefficient a1, expressed as a limit,
which includes a0. Since, a0 is unique, then so will a1 be. Iterating this procedure, we see that the
claim holds by obtaining the sequence:

a0 = limx→x0
ϕ(x)
ζ0(x)

a1 = limx→x0
ϕ(x)−a0ζ0(x)

ζ1(x)

.............................................

an = limx→x0

(
ϕ(x)−

∑n−1
m=0 amζm(x)

)
ζn(x)

.

(2.57)

3 Watson’s lemma

This section discusses integrals of the following type:

f(z) =

∫ ∞
0

e−zuϕ(u)du, (3.1)

where the chosen function ϕ is such that the integral in (3.1) exists for a given z ∈ C. Before
dealing with more general functions, we first focus on functions of the form: ϕ(u) = uλh(u),
where u, λ ∈ R, λ > −1 (to ensure that the integral in (3.1) converges for u = 0) and h(u)
possesses a Taylor series in an open neighbourhood around u = 0 with h(0) 6= 0. If h(u) has a
zero of order m when u = 0, we can simply incorporate um into uλ and define a new function h∗,
such that h∗(0) 6= 0. If we also impose that |h(u)| ≤ Decu over the integration range, where D, c
are a positive constants, such that |z| ≥ c, we have the following Watson’s lemma:

Lemma 3.1.∫ ∞
0

e−zuuλh(u)du = lim
n→∞

( n∑
m=0

hm(0)Γ(m+ λ+ 1)

m!zλ+m+1
+O(z−(λ+n+2))

)
, |z| → ∞, (|Arg(z)| < π

2
).

(3.2)
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Proof. The proof follows the discussion in [4], but we generalize it when the independent variable
is complex and integration range is unbounded. There are several issues with the proof of this
lemma. The main one is the complex variable z inside the integral. Another one is the fact that
the Taylor series of h(u) may not have an infinite radius of convergence. We deal with these
problems one by one. First, let us split the integral in (3.2) in two parts (assuming that both
integrals converge):∫ ∞

0

e−zuuλh(u)du =

∫ U1

0

e−zuuλh(u)du+

∫ ∞
U1

e−zuuλh(u)du = I[0,U1] + I[U1,∞]. (3.3)

The notation [0, U1] means that we are integrating along the straight line from 0 to U1 (in this case
it happens to be the real line as U1 is real). In (3.3) U1 is a positive number, such that U1 < R,
where R is the radius of convergence of the Taylor series of h at u = 0. One might be wondering
if we are dealing with convex subsets of C. This is not true. h is a real function viewed over R,
but not over C. While the integration range is a subset of R, hence trivially convex, we are not
integrating with respect to z, which can be taken from any subset of C. However, we are going to
assume that z belongs to a path-connected topological subspace (subset) of C, so that the notion of
the length of a curve and many others are properly defined. We will now focus on the first integral
on the RHS of (3.3). Since h(u) has a Taylor series at u = 0, we can write:{

h(u) =
∑∞

m=0
hm(0)
m!

um =
∑∞

m=0 amu
m =

∑n
m=0 amu

m + rn(u),

|rn(u)| < Kun+1, for |u| < R,
(3.4)

where rn(u) is the remainder from the Taylor’s theorem, K is a finite positive number and am are
defined by equation (3.4). Now, since U1 < R, we can plug the Taylor series expression of h into
I[0,U1] and split again the integral:

I[0,U1] =

∫ U1

0

e−zuuλ
n∑

m=0

amu
mdu+

∫ U1

0

e−zuuλrn(u)du. (3.5)

At this stage the reader might be thinking that we have not achieved much. The problem with the
complex variable remains. However, when using the O symbol, we eventually took the moduli of
the functions we considered. Let us try this approach here by first dealing with the second integral
in (3.5): ∣∣∣ ∫ U1

0

e−zuuλrn(u)du
∣∣∣ ≤ ∫ U1

0

|e−zuuλrn(u)|du < K

∫ U1

0

e−Re(z)uuλ+n+1du. (3.6)

We now change the variables to ξ = Re(z)u⇒ dξ = Re(z)du. Hence,∫ U1

0

e−Re(z)uuλ+n+1du = Re(z)−(λ+n+2)

∫ Re(z)U1

0

e−ξξλ+n+1dξ (3.7)

= Re(z)−(λ+n+2)

∫ ∞
0

e−ξξλ+n+1dξ −Re(z)−(λ+n+2)

∫ ∞
Re(z)U1

e−ξξλ+n+1dξ (3.8)
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= Re(z)−(λ+n+2)Γ(λ+ n+ 2)−Re(z)−(λ+n+2)

∫ ∞
Re(z)U1

e−ξξλ+n+1dξ. (3.9)

One might argue that extending the integration range from Re(z)U1 to∞ is wrong. After all, we
explicitly stated that we want to stay in an open neighbourhood, the diameter16 of which, is less
than (or equal to) R. However, at this stage I am working only with the polynomial functions, so
extending the region is mathematically correct, as long as it reproduces the initial result, which it
does, as we are using properties of the Riemann integral. We obtained the gamma function in the
last inequality, which suggests that we are heading in the right direction. Let us try to bound the
second integral in (3.9). If we decide to substitute the polynomial function with an exponential:
eξ > ξ, ∀ξ > 0, we have:∫ ∞

Re(z)U1

e−ξξλ+n+1dξ <

∫ ∞
Re(z)U1

e−ξe(λ+n+1)ξdξ =

∫ ∞
Re(z)U1

e(λ+n)ξdξ, (3.10)

which is a divergent integral, and hence not particularly useful as we obtained that something
finite is less than something infinite. However, by “adding” a few more polynomial functions,
the jump to the exponential function is not that big and the procedure succeeds. Indeed, try ξ =
Re(z)U1(1 + v)⇒ dξ = Re(z)U1dv:

Re(z)−(λ+n+2)

∫ ∞
Re(z)U1

e−ξξλ+n+1dξ = Uλ+n+2
1 e−Re(z)U1

∫ ∞
0

e−Re(z)U1v(1 + v)λ+n+1dv. (3.11)

< Uλ+n+2
1 e−Re(z)U1

∫ ∞
0

e−[Re(z)U1−(λ+n+1)]vdv, (3.12)

where we used that (1 + v)a < eav for any a, v > 0. In order to get a convergent integral, we
need to make sure that Re(z)U1 > (λ + n + 1). At this stage comes the condition that |z| → ∞.
However, as the real part of z is appearing in (3.12), we also need to impose that |Arg(z)| < π

2
.

This implies that Re(z) = |z| cos(Arg(z)) > (λ+ n+ 1)/U1 for sufficiently large |z|. Hence, the
integral converges, which gives:

Uλ+n+2
1 e−Re(z)U1

∫ ∞
0

e−[Re(z)U1−(λ+n+1)]vdv = Uλ+n+2
1 e−Re(z)U1

1

Re(z)U1 − (λ+ n+ 1)
(3.13)

= Uλ+n+2
1 e−Re(z)U1

1

Re(z)U1

1

1− λ+n+1
Re(z)U1

= o(e−Re(z)U1), for |z| → ∞ , |Arg(z)| < π

2
.

(3.14)
The integral is exponentially decreasing. Putting everything together, we obtain:∫ U1

0

e−Re(z)uuλ+n+1du = Re(z)−(λ+n+2)Γ(λ+ n+ 2) + o(e−Re(z)U1) (3.15)

= O(Re(z)−(λ+n+2)) = O(|z|−(λ+n+2)), when |z| → ∞, |Arg(z)| < π

2
. (3.16)

16I am considering the induced topology ((0,∞), Tm) over R, so the diameter will not be 2R.
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Now, since the LHS of (3.15) is the modulus of
∫ U1

0
e−zuuλ+n+1du, we can generalize (3.15) and

(3.16), using the definition of the O symbol, for z ∈ C:∫ U1

0

e−zuuλ+n+1du = O(z−(λ+n+2)), when |z| → ∞ and |Arg(z)| < π

2
⇒ (3.17)

∫ U1

0

e−zuuλrn(u)du = O(z−(λ+n+2)), when |z| → ∞ and |Arg(z)| < π

2
. (3.18)

Let us now return back to the first integral in (3.5). By interchanging the sum and the integral (as
the terms are finitely many) and by applying the same procedure as above, we easily get:∫ U1

0

e−zuuλ
n∑

m=0

amu
mdu =

n∑
m=0

amΓ(λ+m+ 1)z−(λ+m+1) +O((z−(λ+n+2)). (3.19)

Therefore, substituting everything back to (3.5), we finally obtain:

I[0,U1] =

∫ U1

0

e−zuuλh(u)du =
n∑

m=0

hm(0)

m!
Γ(λ+m+ 1)z−(λ+m+1) +O((z−(λ+n+2))17, (3.20)

which upon iteration produces (3.2). This implies that I[U1,∞] needs to belong to the classO((z−(λ+n+2)).
The problem here is that we cannot substitute the Taylor series expression of h into the integral,
since at some point we will go outside the open neighbourhood over which the series converges
(i.e. when u > R). However, we know that |h(u)| ≤ Decu, ∀u > 0, by assumption, and hence:

|I[U1,∞]| =
∣∣∣ ∫ ∞

U1

e−zuuλh(u)du
∣∣∣ < ∫ ∞

U1

e−Re(z)uuλDecudu. (3.21)

We distinguish two cases now, namely λ ∈ (−1, 0) and λ > 0 (the case when λ = 0 follows
trivially). If λ ∈ (−1, 0), then uλ will be a decreasing function and since Re(z) > c, we estimate
(3.21) by:

|I[U1,∞]|λ∈(−1,0) < D

∫ ∞
U1

e−(Re(z)−c)uUλ
1 du = −DUλ

1 e
−(Re(z)−c)U1 = O(e−Re(z)U1). (3.22)

When λ > 0, then clearly uλ < eλu (an estimate that failed last time), gives:

|I[U1,∞]|λ>0 < D

∫ ∞
U1

e−(Re(z)−c−λ)udu = O(e−Re(z)U1). (3.23)

The key idea here (and before in the discussion, though being suppressed there) is that the class of
functions O(e−z) is contained in O(z−N), ∀N > 0 when |z| → ∞ (i.e. O(e−Re(z)U1) = O(e−z) =
O((z−(λ+n+2))). This implies that:

I[U1,∞] =

∫ ∞
U1

e−zuuλh(u)du = O((z−(λ+n+2)), (3.24)

as required.
17I should continue stating that this holds only when |z| → ∞ with |Arg(z)| < π

2 , but I hope that this is obvious.
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4 Conclusion

The project achieved the purpose of introducing some simple concepts of the asymptotic methods.
The theory developed will prove to be beneficial mainly for physicists looking for background ma-
terial in order to start reading textbooks on this topic, such as [3]. A great emphasis is put on sub-
tle connections between the subject and general topology, which is regarded useful in many other
branches of physics, such as general relativity. What is more, some unique examples are provided
to reinforce the introduced notions. A careful discussion about the differences between asymptotic
series and power series from real or complex analysis is also present. Finally, sometimes several
different proofs of the same theorem are provided and different points of view considered. Unique
proofs take place on several occasions.

Building on the foundational material discussed here, one could explore important consequences
of the Watson’s lemma, for example the Laplace’s method for integrals and saddlepoint approxi-
mations, which can immediately be applied in PDEs and many branches of physics. Nevertheless,
the material covered focuses on issues and problems which many authors ignore, leaving a gap in
the knowledge of the reader, who might otherwise struggle with the more important concepts that
follow.
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