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1 Introduction

Stochastic epidemic modelling is the application of statistical models to spread of infectious pathogens

through a population. Allen (2017) states that “stochastic modelling of epidemics is important when

the number of infectious individuals is small or when the variability in transmission, recovery, births,

deaths, or the environment impacts the epidemic outcome”. These models can then be used to derive

information about real-world epidemics.

In this report, the main model we will be investigating is the SIR model. The SIR model splits the

population into three categories (susceptible, infective, and recovered), where individuals can move be-

tween the categories at constant but unknown rates. Our goal is to gain information on these rates,

given that we have data on the times individuals recover from the pathogen. However, we generally do

not have data on the time when individuals are infected with the pathogen, resulting in a missing data

problem.

In order to conduct inference about the model parameters and infection times, we will be using a Bayesian

approach; specifically, we will be using Markov chain Monte Carlo methods, such as the Metropolis-

Hastings algorithm and the Gibbs sampler. These algorithms are used to calculate an approximate

sample from a distribution that cannot normally be sampled from.

There are many practical applications of the methods described in this report, including modelling the

spread of smallpox (Stockdale et al., 2017), antibiotic-resistant microbes (Kypraios et al., 2010), parasitic

diseases (Chapman et al., 2018), influenza (Osthus et al., 2017), invasive species (Cook et al., 2007), and

COVID-19 (Mbuvha and Marwala, 2020).

In Section 2 we introduce the standard stochastic SIR model, simulate from the model, and derive the

likelihood of the times of infection and recovery. In Section 3 we introduce Markov chain Monte Carlo

methods, with details on the Metropolis-Hastings algorithm and the Gibbs sampler. In Section 4 we

use Markov chain Monte Carlo for Bayesian inference on the SIR model with missing data, and use this

method on a simulated dataset. Extensions to the SIR model are discussed in Section 5, including a

variable infection rate and a non-fixed population. In Section 6 we explore current open research areas,

and we conclude with a discussion in Section 7.
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2 The SIR Model

2.1 Defining the Model

We first investigate a simple model: the standard stochastic SIR epidemic, as defined in Chapter 7 of

Held et al. (2019). This model considers the spread of a pathogen through a population where we assume

all individuals are potentially vulnerable to the pathogen. We also assume the population has a fixed

size N – this means there is no immigration or emigration, no births, and no deaths (other than from

the pathogen).

We split the population into three categories:

• Susceptible (S) – individuals who have not yet been infected with the pathogen.

• Infective (I) – individuals who currently are infected with the pathogen and can transmit it to

others.

• Recovered (R) – individuals who have previously been infected with the pathogen, but no longer

transmit it, and are now immune. This includes both individuals who have recovered to a healthy

state and individuals who have died from the pathogen.

S I R
β γ

Let S(t), I(t), and R(t) be the number of individuals at time t who are susceptible, infective, and

recovered respectively. Unless otherwise specified, we start at t = 0 with one infective individual and all

other individuals susceptible: S(0) = N − 1, S(0) = 1, and R(0) = 0. Since the total population is fixed,

we have S(t) + I(t) +R(t) = N for all t.

Each susceptible individual moves from state S to state I at constant rate β (for each infective individual

they contact), and each infective individual moves from state I to state R at constant rate γ. This

means the overall rate of change between S and I at time t is βS(t)I(t)/N , and the overall rate of change

between I and R at time t is γI(t). This corresponds to the deterministic general epidemic defined by

the following differential equations:

dS(t)

dt
= −βS(t)I(t)

N
,

dI(t)

dt
=

βS(t)I(t)

N
− γI(t),

dR(t)

dt
= γI(t).

We assume both the time until infection and the time between infection and recovery are exponen-

tially distributed. This means that at any time t, the time until the next infection is distributed as

Exp
(

βS(t)I(t)
N

)
, and the time until the next recovery is distributed as Exp(γI(t)). The model reaches a

steady state when I(t) = 0, since there are no more infective individuals to spread the pathogen.

We also define the basic reproduction number R0 := β/γ. Since each individual infectious period is

exponentially distributed with rate γ, the average length of infection is 1/γ, and so R0 is the average

number of infections each infective individual causes during their infectious period. This means a major

outbreak will only occur if R0 > 1.
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2.2 Simulating from the Model

We can simulate from the SIR model using Gillespie’s algorithm, originally formulated in Gillespie (1976).

At each time when an event occurs, we generate the time until the next infection from Exp
(

βS(t)I(t)
N

)
and the time until the next recovery from Exp(γI(t)). The event that corresponds to the lesser time is

is selected as the event which occurs next, and then time moves on by that time amount.

Algorithm 1 SIR Model Simulation

Require: Population size N ∈ N, transmission rate β ∈ (0,∞), recovery rate γ ∈ (0,∞).

1: Let t = 0.

2: Let S(0) = N − 1, I(0) = 1, R(0) = 0.

3: while I(t) ̸= 0 do

4: Generate ti from Exp
(

βS(t)I(t)
N

)
.

5: Generate tr from Exp(γI(t)).

6: if ti < tr then

7: Let S(t+ ti) = S(t)− 1 and I(t+ ti) = I(t) + 1.

8: Let t = t+ ti.

9: end if

10: if tr < ti then

11: Let I(t+ tr) = I(t)− 1 and R(t+ tr) = R(t) + 1.

12: Let t = t+ tr.

13: end if

14: end while

We know that the minimum of two exponential random variables with rates λ1 and λ2 is also an expo-

nential random variable, with rate λ1+λ2. This means we can change our algorithm: at each time when

an event occurs, we generate the time until the next event from

Exp

(
βS(t)I(t)

N
+ γI(t)

)
,

and determine the value of α, where

α =
βS(t)I(t)

N
βS(t)I(t)

N + γI(t)
.

The type of event that occurs is an infection event with probability α, and a recovery event otherwise;

then time moves on by the generated amount.
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Algorithm 2 SIR Model Simulation

Require: Population size N ∈ N, transmission rate β ∈ (0,∞), recovery rate γ ∈ (0,∞).

1: Let t = 0.

2: Let S(0) = N − 1, I(0) = 1, R(0) = 0.

3: while I(t) ̸= 0 do

4: Generate t∗ from Exp
(

βS(t)I(t)
N + γI(t)

)
.

5: Let α =
(

βS(t)I(t)
N

)
/
(

βS(t)I(t)
N + γI(t)

)
.

6: Generate u from U(0, 1).

7: if u < α then

8: Let S(t+ t∗) = S(t)− 1 and I(t+ t∗) = I(t) + 1.

9: end if

10: if u > α then

11: Let I(t+ t∗) = I(t)− 1 and R(t+ t∗) = R(t) + 1.

12: end if

13: Let t = t+ t∗.

14: end while

Algorithm 2 is an improvement over Algorithm 1 because we only sample from an exponential distribution

once per iteration (rather than twice). Sampling from the exponential distribution using the inverse c.d.f.

method involves taking the logarithm of a generated value. This adds a very small amount of computation

time per sample, but can become large depending on the amount of time needed to simulate from the

model. This means the computation time of any simulation is less when using Algorithm 2.

2.3 Simulated Example

We now use Algorithm 2 to simulate the SIR model for a fixed population of 100 individuals. We let

β = 2 and γ = 1. In Figure 1 we see how S(t), I(t), and R(t) change over time. The final state of the

system is reached at t = 9.09 (to 3s.f.), with 76 recovered individuals, and 26 individuals who were never

infected.

Figure 1: Simulation of the SIR model, with S(t) in black, I(t) in red, and R(t) in blue.
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2.4 Event Times Likelihood

Consider the standard stochastic SIR epidemic on a population with fixed size N , of which n individuals

have become infective and recovered when the model reaches its steady state (of no infective individuals).

We let i be the set of infection event times, r be the set of recovery event times, and t be the set of

both infection and recovery event times. We order the recovery times such that r1 ≤ r2 ≤ · · · ≤ rN ,

and let ij be the infection time for the individual who recovers at time rj . We start the model at the

moment of the first infection, so i1 = 0. If n < N , then not all individuals become infective, so we let

in+1, . . . , iN , rn+1, . . . , rN = ∞.

We now derive the joint likelihood of i and r, given parameters β and γ,

L(i, r|β, γ) =
n∏

j=1

L(ij |β, γ)
n∏

j=1

L(rj |β, γ).

First we consider the recovery part of the likelihood. We know that the length of the infection period

for each individual j is rj − ij , and that this time period is exponentially distributed with rate γ. Using

the p.d.f. of the exponential distribution we have

n∏
j=1

L(rj |β, γ) =
n∏

j=1

(γ exp (−γ(rj − ij))) ,

= γn exp

−γ

n∑
j=1

(rj − ij)

 .

Now we consider the infection part of the likelihood. We know that i1 = 0, so we only need to consider

the likelihood for j ≥ 2. We know that the length of the pre-infection period for each individual

j is ij . By considering the number of infectious individuals throughout the pre-infection period, the

total exposure-time is
∑

k:tk≤ij
I(tk−1)(tk − tk−1). Using the p.d.f. of the exponential distribution, we

have

n∏
j=1

L(ij |β, γ) =
n∏

j=2

 β

N
(I(ij)− 1) exp

− β

N
(I(ij)− 1)

∑
k:tk≤ij

I(tk−1)(tk − tk−1)

 ,

=
βn−1

Nn−1

 n∏
j=2

(I(ij)− 1)

 exp

(
− β

N
σ(i, r)

)
,

where

σ(i, r) =

n∑
j=1

N∑
k=1

(min{rj , ik} −min{ij , ik}) ,

the total exposure-time of all individuals pre-infection. This formula is derived from individual j can

only being able to infect individual k for the length of time where both j is infective (ij < t < rj) and k

has not yet been infected (t < ik), summed over all j and k.

This means the overall likelihood is

L(i, r|β, γ) = βn−1

Nn−1
γn

 n∏
j=2

(I(ij)− 1)

 exp

− β

N
σ(i, r)− γ

n∑
j=1

(rj − ij)

 ,

as seen in Chapter 9 of Held et al. (2019)

However, in most real-world cases when we have data of the recovery times r, we will not have data on

the infection times i. Instead, we must treat i as an additional parameter to be estimated, as developed

in O’Neill and Roberts (1999).
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We now use a Bayesian approach to find the joint posterior distribution π(i, β, γ|r). Using Bayes’ rule,

we have

π(i, β, γ|r) ∝ L(i, r|β, γ)π0(β, γ),

where π0(β, γ) is the joint prior distribution of β and γ. We will assume β and γ have independent prior

distributions, both following a gamma distribution:

β ∼ Gamma(aβ , bβ),

γ ∼ Gamma(aγ , bγ).

This means we have joint posterior distribution

π(i, β, γ|r) ∝ L(i, r|β, γ)π0(β)π0(γ),

∝ βn−1γn

 n∏
j=2

(I(ij)− 1)

 exp

− β

N
σ(i, r)− γ

n∑
j=1

(rj − ij)

βaβ−1 exp (−bββ) γ
aγ−1 exp (−bγγ) ,

∝ βn+aβ−2γn+aγ−1

 n∏
j=2

(I(ij)− 1)

 exp

− β

N
σ(i, r)− γ

n∑
j=1

(rj − ij)− bββ − bγγ

 .

Clearly this is an intractable distribution that we cannot sample from, so we look to methods that can

give an approximate sample.

3 Markov Chain Monte Carlo Methods

3.1 MCMC Introduction

Markov chain Monte Carlo (MCMC) is a collection of methods used to approximate a sample from a

distribution that cannot normally be sampled from. In using MCMC methods we construct a Markov

chain that converges to the target distribution π(θ). The states of this chain are then used as approximate

samples to π(θ). The main source used for this section is Brooks (1998).

3.2 The Metropolis-Hastings Algorithm

The first MCMC method we investigate is the Metropolis-Hastings algorithm, originally developed in

Metropolis et al. (1953) and Hastings (1970). In this algorithm, instead of sampling from the intractable

π(θ), we repeatedly sample from a proposal distribution q(θ|η), which is chosen such that it is easy to

sample from. In each step k of the algorithm, we sample from q(θ∗|θk−1), and let the generated value

be θk with probability α (otherwise, we let θk be θk−1). We calculate α at each step based on π and

q.

Algorithm 3 General Metropolis-Hastings

Require: Number of iterations M , initial value θ0, proposal distribution q(θ|η).
1: for k ∈ {1, . . . ,M} do

2: Generate θ∗ from q(θ∗|θk−1).

3: Let

α = min

{
1,

π(θ∗)q(θk−1|θ∗)

π(θk−1)q(θ
∗|θk−1)

}
.

4: With probability α, let θk = θ∗. Otherwise, let θk = θk−1.

5: end for
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If the proposal distribution q(θ|η) does not depend on η, then we write q(θ|η) = q(θ) and call this case

the independence sampler. If q(θ|η) = q(η|θ), then the calculation of α simplifies to min {1, π(θ∗)/π(θk−1)}
– we call this case the random walk Metropolis (RWM).

Let K(θ,η) be the probability density of moving from θ to η in the Markov chain constructed in this

algorithm. Let α(θ,η) be the probability of accepting a move from θ to η. Then clearly we have

K(θ,η) = q(η|θ)α(θ,η).

To prove that the Markov chain we have constructed has π(θ) as its stationary distribution, we will show

that the detailed balance equation holds: for any points θ and η we have

π(θ)K(θ,η) = π(η)K(η,θ).

At each step the Metropolis-Hastings algorithm we have two cases: either we accept the generated move,

or reject it. If we reject the move, then θ = η, so clearly we have detailed balance. Otherwise, η is the

accepted move from θ, and so we have

π(θ)K(θ,η) = π(θ)q(η|θ)α(θ,η),

= π(θ)q(η|θ)min

{
1,

π(η)q(θ|η)
π(θ)q(η|θ)

}
,

= min{π(θ)q(η|θ), π(θ)q(η|θ)},

= π(η)K(η,θ),

where the final line follows from the symmetry of taking the minimum of two numbers. This means

the Markov chain in the Metropolis-Hastings algorithm satisfies detailed balance, and so has π(θ) as its

stationary distribution as required.

3.3 The Gibbs Sampler

The other MCMC method we investigate is the Gibbs sampler, as developed in Geman and Geman

(1984). In the Gibbs sampler, we partition our parameters of interest θ into blocks (θ(1), . . . ,θ(m)) and

calculate the conditional distribution of each block π(θ(j)|θ(not j)), such that it is possible to sample from

each conditional distribution (even though we cannot sample from π(θ)). By repeatedly sampling from

the conditional distributions (dependent on the most recently sampled values from the other blocks) we

generate an approximate sample of θ.

Algorithm 4 General Gibbs Sampler

Require: Number of iterations M , initial value θ0.

1: Partition θ into blocks such that θ = (θ(1), . . . ,θ(m)).

2: for k ∈ {1, . . . ,M} do

3: for j ∈ {1, . . . ,m} do

4: Generate θ(j)∗ from π(θ(j)|θ(1)
k , . . . ,θ

(j−1)
k ,θ

(j+1)
k−1 , . . . ,θ

(m)
k−1).

5: Let θ
(j)
k = θ(j)∗.

6: end for

7: end for

The Gibbs sampler can be considered a special case of the Metropolis-Hastings algorithm. When updating
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block j, we have proposal distribution q(θ(j)∗|θ) = π(θ(j)∗|θ(not j)), and so

α = min

{
1,

π(θ(j)∗|θ(not j))q(θ(j)|θ∗)

π(θ(j)|θ(not j))q(θ(j)∗|θ)

}
,

= min

{
1,

π(θ(j)∗|θ(not j))π(θ(j)|θ(not j))

π(θ(j)|θ(not j))π(θ(j)∗|θ(not j))

}
,

= 1.

This means we always accept the value generated from the proposal distribution, as in the Gibbs sampler

presented above. Since we have shown that the Metropolis-Hastings algorithm has stationary distribution

π(θ), this means the Gibbs sampler also has stationary distribution π(θ).

4 Bayesian Inference on the SIR Model

4.1 MCMC Algorithm

We now use these MCMC methods to construct an algorithm for inference on the SIR model (as seen

in Chapter 9 of Held et al. (2019)). Based on the joint posterior distribution calculated earlier, the

conditional posterior distributions of β, γ, and i are:

π(β|i, r, γ) ∝ βn+aβ−2 exp

(
−β

(
1

N
σ(i, r) + bβ

))
,

π(γ|i, r, β) ∝ γn+aγ−1 exp

−γ

 n∑
j=1

(rj − ij) + bγ

 ,

π(i|r, β, γ) ∝

 n∏
j=2

(I(ij)− 1)

 exp

− β

N
σ(i, r)− γ

n∑
j=1

(rj − ij)

 .

Clearly the conditional distributions for β and γ have the shape of a gamma distribution, so we

have

β|i, r, γ ∼ Gamma

(
n+ aβ − 1,

1

N
σ(i, r) + bβ

)
,

γ|i, r, β ∼ Gamma

n+ aγ ,

n∑
j=1

(rj − ij) + bγ

 .

Unfortunately, it is still not possible to sample from the distribution of i. Instead we will use a Metropolis-

Hastings step. We know that each infection period is exponentially distributed with rate γ, and ends at

a known recovery time. For each individual j, we can generate a new length of the infective period x

from X ∼ Exp(γ), and let our new infection time be i∗j = rj − x. Let i∗ be equal to the current value of

i, but replacing ij with i∗j . We then accept i∗j to replace the current ij with probability α, where

α = min

{
1,

π(i∗|r, β, γ)fX(rj − ij)

π(i|r, β, γ)fX(rj − i∗j )

}
.

This means our overall algorithm uses a Gibbs sampler, with one part of each iteration using a Metropolis-

Hastings step:
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Algorithm 5 Inference for the SIR model using MCMC

Require: Number of iterations M , population size N , recovery times r, initial value β0, initial value γ0,

initial values i0.

1: for k ∈ {1, . . . ,M} do

2: Generate βk directly from π(β|ik−1, r, γk−1).

3: Generate γk directly from π(γ|ik−1, r, βk).

4: for j = 1 to N do

5: Generate x from X ∼ Exp(γk).

6: Let i∗ = ik−1, and then let i∗j = rj − x.

7: Let

α = min

{
1,

π(i∗|r, βk, γk)fX(rj − ij)

π(ik−1|r, βk, γk)fX(rj − i∗j )

}
.

8: With probability α, let ij,k = i∗j . Otherwise let ij,k = ij,k−1.

9: end for

10: end for

4.2 Simulated Example

We now use Algorithm 5 to estimate β, γ, and i, given the recovery times from the data simulated

in Section 2 (which was simulated with parameters β = 2 and γ = 1). The population contains 100

individuals, 76 of whom have finite recovery times. This means only 76 individuals ever become infected,

so N = 100 and n = 76. We assume we are working in a scenario where we have the recovery time data

r, but no knowledge of β, γ, or i.

Without any knowledge of β or γ, we just let β0 = γ0 = 0. We let the initial infection time for individual

j be halfway between the times 0 and rj , so we have i0 = r/2. We also choose flat, high variance priors

for β and γ – we let aβ = aγ = 1 and bβ = bγ = 10−4. These are the same priors used in Chapter 9 of

Held et al. (2019).

We run the Markov chain for 1000 iterations, producing the following trace plots in Figure 2. Obviously

we want to investigate the trace plots of β and γ, but it is not reasonable to produce plots of all 76

infection times. Instead we have traces plots of one infection time (arbitrarily chosen to be i51) and the

sum of all infection times
∑76

j=1 ij . The true values of all parameters are shown in red. We see that the

four chains below all mix well, although they seem to spend more time above the true value than below

it.
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Figure 2: Trace plots for the Markov chains to sample for β, γ, i51, and
∑76

j=1 ij , with true values in red.

We also produce the following histograms for β, γ, i51, and
∑76

j=1 ij in Figure 3. Since the basic

reproduction number R0 is equal to β/γ, we can easily calculate a vector of values for R0 by R0,k = βk/γk

for k from 1 to 1000. This means we can also plot a histogram for R0 in Figure 3. The first 20 iterations

of all parameters are removed from the data, since it takes several iterations for the Markov chain to

converge (this removed data is called burn-in, and the point when burn-in ends is generally chosen by

eye).

The mean values for β and γ were 2.41 and 1.25 respectively (to 3 s.f.), compared with the true values

of 2 and 1. The mean value for R0 was 1.97 (to 3s.f.), compared with the true value of 2. This means

the estimates for β and γ over-estimate by 20− 25%, but that the estimate for R0 is correct within 5%.

Again the true values of all parameters are shown in red, with the means of the values generated by the

Markov chain shown in blue.
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Figure 3: Histograms for the samples of β, γ, i51,
∑76

j=1 ij , and R0, with true values in red and average

values in blue.

5 Model Extensions

5.1 Different Infectious Period Distributions

We now look to improve the SIR model by removing previous assumptions and generalising the model

for a greater number of situations. First, we investigate infection period distributions other than the

exponential distribution.

Our previous assumption that the infectious period is exponentially distributed was somewhat simplistic;

the memorylessness property means that the probability of recovery in the same at any given time after

infection, and only having one parameter means that the mean and variance are not independent of

each other. A natural extension of the gamma distribution or the Weibull distribution are suggested

in Held et al. (2019) – both have more than one parameter, and are part of the exponential family of

distributions. Having multiple parameters means that the mean and the variance of the infectious period

can be determined separately.

This means the recovery times part of the likelihood of i and r becomes

n∏
j=1

L(rj |β,θ) =
n∏

j=1

fX(rj − ij |θ),

where X is the distribution of each infectious period (with parameters θ). During Bayesian inference we

now also sample for all parameters θ.

5.2 Variable Infection Rate

Previously we have assumed that each individual is infected at constant rate β for each currently infective

individual. This is often not a reasonable assumption: each individual in the population will have more

contact with certain individuals (family, friends, etc.) than others, and not everyone will pass on the

pathogen at the same rate (for example, those with weaker immune systems may be more venerable).

We will now relax this assumption, and define a different rate βi,j for each pair of individuals i and

j.

If the infectious period has distribution X with parameters θ, then from Chapter 9 of Held et al. (2019)
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the likelihood of i and r is

L(i, r|β,θ) =
n∏

j=1

L(ij |β,θ)L(rj |β,θ),

=

 n∏
j=2

ρ(j, β, i, r)

 exp (−σ∗(β, i, r))

n∏
j=1

fX(rj − ij |θ),

where

ρ(j, β, i, r) =
∑

k:ik<ij<rk

βkj
,

the total rate of infection towards individual j just before being infected, and where

σ∗(β, i, r) =

n∑
j=1

N∑
k=1

βj,k (min{rj , ik} −min{ij , ik}) ,

the total rate of infection over time towards all individuals not yet infected.

Generally we are interested in βi,j when it has some known form based on i and j. For example, in

Chapman et al. (2018), the transmission rate is scaled based on the distance between the households

of individuals i and j (both exponential decay and Cauchy-style decay are tested). We can take this

approach further by also letting the transmission rate change through time, such as in Kypraios et al.

(2010), although we will not cover the details in this report.

5.3 Exposed Period (SEIR Model)

Another extension we can make to the model is the addition of an ‘exposed’ (E) category, for individuals

who have been infected with the pathogen, but cannot yet transmit it to others. This is a common

property of real-world pathogens. After adding this category we now have the SEIR model.

S E I R
α β γ

Instead of a transmission rate β from S to I, we now have a constant exposure rate α from S to E, and a

constant transmission rate β from E to I. This means we have the following differential equations:

dS(t)

dt
= −αS(t)I(t)

N
,

dE(t)

dt
=

αS(t)I(t)

N
− βE(t),

dI(t)

dt
= βE(t)− γI(t),

dR(t)

dt
= γI(t).

Let e be the set of times when individuals first become exposed to the pathogen, i be the set of times

when individuals first become infectious, and r be the set of times when individuals recover. Instead

of exponential distribution rates β and γ, let X be the distribution of each infectious period (with

parameters θ) and Y be the distribution of each exposure period (with parameters η). Then the joint
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likelihood of e, i, and r is

L(e, i, r|α,θ,η) =
n∏

j=1

L(ej |α,θ,η)L(ij |α,θ,η)L(rj |α,θ,η),

=
βn−1

Nn−1

 n∏
j=2

(I(ej)− 1)

 exp

(
− β

N
σE(e, i, r)

) n∏
j=1

gY (ij − ej |η)fX(rj − ij |θ),

where

σE(e, i, r) =

n∑
j=1

N∑
k=1

(min{rj , ek} −min{ij , ek}) ,

the total exposure-time of all individuals before being exposed themselves.

From this likelihood we can calculate the joint posterior distribution of e, i, α, θ, and η given r, and then

use a similar MCMC algorithm to Algorithm 5 to approximate values from this distribution. However,

this means that for each recovery time rj we are estimating both an exposure time ej and infection

time ij – the model is over-parameterised, and so will lead to correlation between parameters. To

deal with this issue with our MCMC algorithm we will need significant prior information about the

exposure period and/or the infectious period (so that the model can determine the difference between

them). Alternatively, we could use particle MCMC methods that can account for the correlation between

parameters, such as in Rosato et al. (2022).

5.4 Non-Fixed Population

We now return to the SIR model. We have previously assumed a fixed population of size N , with no

changes in population due to immigration, emigration, births, or deaths (other than deaths from the

pathogen, which are counted as recoveries). This is an acceptable assumption if we are modelling a short

time frame and/or an isolated community, but breaks down over longer periods of time. We now add

to the model the possibility of births (with rate λ), natural deaths (with rate µ), and deaths due to the

pathogen (with rate ν, no longer counted as recoveries). We assume the size of the population fluctuates

around N .

S I R
β γ

Λ

µ µ+ ν µ

This means we have the following system of differential equations:

dS(t)

dt
= λN − βS(t)I(t)

N
− µS(t),

dI(t)

dt
=

βS(t)I(t)

N
− γI(t)− (µ+ ν)I(t),

dR(t)

dt
= γI(t)− µR(t).

13



Again we have we have a significantly greater number of parameters, so we may need methods that can

account for the correlation between parameters, such as particle MCMC.

5.5 Other Extensions

There are many other extensions we can make to the SIR model. We can add the possibility of relapsing

(returning to the infected category after recovering), as in Chapman et al. (2018), or add the possibility

of losing immunity to the pathogen sometime after recovering (and returning to the susceptible category,

also known as the SIRS model). Another possible extension is to add changepoints to the model, in order

to accommodate sudden changes in model parameters (such as the transmission rate of the pathogen).

This was used to account for new variants of COVID-19 in Gu and Yin (2022). We can also relax the

assumption of a homogeneously mixing population and consider a network model, such as in Altarelli

et al. (2014) and Britton and O’Neill (2002).

6 Open Problems

We now briefly explore open problems in the area of stochastic epidemic modelling. A good summary of

these open challenges can be found on Britton et al. (2014), which is what we use in this section. Pellis

et al. (2015) is also a good resource for open problems specifically for stochastic epidemic modelling using

network models.

A key area for further study is the emergence of endemic behaviour – what is the probability the pathogen

survives after the initial epidemic stage and becomes endemic. Approximate solutions are provided in van

Herwaarden (1997) and Meerson and Sasorov (2009), but still more progress needs to made (specifically

for situations more complex than the standard SIR model).

We have previously assumed that population is constant (or approximately constant over time). However,

this assumption is not accurate if the overall birth and death rates are different; in this case the average

size of the population will be changing over time. This model has been studied in Britton and Trapman

(2014).

Another important area for further study is how to account for the mutation of pathogens in stochastic

epidemic models. One method that has been used is the application of changepoints to the transmission

rate in Gu and Yin (2022).

7 Conclusion

In this report, we have introduced the SIR model, a compartmental model for the spread of a pathogen

through a population. The Gillespie algorithm was used to construct an algorithm for simulating from the

model (which we then did). We also introduced two Markov chain Monte Carlo methods for generating

an approximate sample from a given distribution: the Metropolis-Hastings algorithm, and the Gibbs

sampler. We then applied these MCMC methods to the SIR model (with missing data) to construct

an algorithm to perform inference for our model parameters, and used this algorithm on our simulated

dataset. After running the Markov chain for 1000 iterations we generated reasonable estimates of the

model parameters. We also investigated a variety of improvements that can be made to the standard

SIR model, and explored open research areas in stochastic epidemic modelling.
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Code Availability

The code used to produce the results in Sections 2 and 4 can be found at the following GitHub page:

https://github.com/neilljn/RT2
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