
RT1 Report: The Multi-Armed Bandit Problem

and Thompson Sampling

James Neill

Supervisor: James Grant

February 2023

Overview

Consider a business deciding which advert should go on the homepage of their website each day.

Some adverts will, on average, make more money than others – but the amount of money an

advert will make will be different from day to day (as usage of the website fluctuates). With

no prior knowledge of the quality of the adverts, how does the business decide which adverts to

run?

This scenario is an example of the multi-armed bandit problem: we must continually take

actions from a given set of options, making decisions based on the rewards of each action taken

so far. We do not have any external information about the possible rewards of each action. Our

goal is to find a method for decision-making that will, on average, result in the largest reward.

Continuing the scenario above, one method could be trying each advert once, choosing the

one we like best, and then displaying it every day from then on. This strategy favors ‘exploiting’

– favoring the option with the greatest perceived reward. But if we make the wrong decision

initially, we would make the wrong decision every day from then on. Another method could be

to spend a whole year trying each advert the same number of times, determining which makes

the most money on average, and choosing that advert from then on. This strategy favours

‘exploring’ – gathering lots of information about which takeaway is really the best, at the cost

of having to spend a whole year making less money. We want to find a strategy that balances

both exploring and exploiting.

In this report, we will focus on two strategies for decision making in the multi-armed bandit

problem. The first is a ‘greedy’ algorithm, which works like the above examples. We have a fixed

period of exploring, and then spend the rest of our time exploiting. The second algorithm uses

a method called Thompson sampling, which continually balances exploration and exploitation

by using the information gathered so far to build a clear image of the possible rewards (and how

likely these possible rewards are) from each action. We will show that the Thompson sampling

algorithm will lead to a greater average reward than the greedy algorithm, and investigate

different methods for approximating the Thompson sampling algorithm when it is not possible

to apply the method directly.

1

1 Multi-Armed Bandits

The multi-armed bandit (MAB) problem is a problem of choosing between different actions

(called arms), each with a stochastic random reward from an unknown distribution. Our goal

is to formulate a method of decision-making that will, on average, maximise the total reward.

This method will split our time between ‘exploring’ - collecting information on which action

will on average provide the largest reward - and ‘exploiting’ - taking the action that we have

determined is best.

We can formulate this problem mathematically as follows: across T rounds, in each round

we must choose one of K actions, where T is significantly larger than K. Choosing action

k ∈ {1, . . . ,K} in round t ∈ {1, . . . , T} gives reward Xk,t ∼ νk, where νk is a probability

distribution with unknown parameters. The distribution νk does not depend on the current

round t, so rewards are i.i.d. over time for each possible action.

Ideally, to ensure the greatest total reward, we would take the action with the greatest

expected reward every round. In this case the expected reward each round is maxk{E(νk)}.
However, since we do not know the probability distributions νk, we will inevitably take some

other set of actions a1, . . . , aT , where each ai ∈ {1, . . . ,K}. The expected reward in each round

t is instead E(νat).
We define regret ρ as the difference between the expected total reward of the ideal case and

the expected total reward of the actual case:

ρ(T) =
T∑
t=1

(
max
k

{E(νk)} − E(νat)
)
,

= T ·max
k

{E(νk)} −
T∑
t=1

E(νat).

Our goal when choosing actions is to minimise this regret (i.e. to maximise our reward). In

order to do this we will follow an algorithm to dictate which action to choose in each round;

several algorithms are presented in the next section.

2 Algorithms

2.1 ε-Greedy Algorithm

The first algorithm we investigate is a ‘greedy’ algorithm – called greedy because after an initial

exploration phase (where we select each arm an equal amount for εT rounds, given some ε, and

calculate the average reward for each arm), we exploit the algorithm by choosing the arm with

the greatest average reward. This algorithm is sometimes called ε-first or explore-then-commit.

The algorithm is as follows (where x
(k)
1:t is the subset of x1, . . . , xt where arm k is chosen,

and sk,t is the length of x
(k)
1:t):

2

Algorithm 1 ε-Greedy

Require: ε ∈ (0, 1)

1: for t ∈ {1, . . . , ⌊εT ⌋} do

2: Let k = t mod K.

3: If k = 0, instead let k = K. ▷ Cycling through 1, . . . ,K

4: Let xt = Xk,t.

5: end for

6: for k ∈ {1, . . . ,K} do

7: Let yk =
∑

x
(k)
1:⌊εT ⌋/sk,⌊εT ⌋. ▷ Finding the average reward

8: end for

9: Let k′ = argmaxk{yk}.
10: for t ∈ {⌊εT ⌋+ 1, . . . , T} do

11: Let xt = Xk′,t. ▷ Only choosing the ‘best’ arm

12: end for

We will now show that this algorithm takes O(n) time (adapted from Chapter 6 of Lattimore

and Szepesvári (2020)). For each k ∈ {1, . . . ,K}, let ∆k = maxl{E(νl)} − E(νk). Then we can

write regret as

ρ(T) =
T∑
t=1

(
max
k

{E(νk)} − E(νat)
)

=
T∑
t=1

E

(
K∑
k=1

∆kI(k = at)

)

=
K∑
k=1

∆kE

(
T∑
t=1

I(k = at)

)
.

Then when we use the ε-Greedy algorithm, we have

ρ(T) =
K∑
k=1

∆k

(
E

(⌊εT ⌋∑
t=1

I(k = at)

)
+ E

(
T∑

t=⌊εT ⌋+1

I(k = at)

))

=

K∑
k=1

∆k

(⌊εT
K

⌋
+ I(k < εT/K) + (T − ⌊εT ⌋)P(k = k′)

)
.

Since P(k = k′) is non-zero for all k, we see that the regret is O(T).

2.2 Thompson Sampling Algorithm

The second algorithm we investigate is Thompson Sampling (TS). This algorithm was originally

developed by William Thompson in Thompson (1933). In this algorithm, we calculate the

posterior distribution for the parameters of the distributions of each arm (given some prior

distribution, chosen based on the particular problem). Each round, we take one sample from

each arm’s distribution. Whichever arm that provided the sample that gives the largest expected

reward is selected, and the posterior distribution of this arm is updated with the new datapoint.

3

The algorithm is as follows (from Chapter 4 of Russo et al. (2018)):

Algorithm 2 Thompson Sampling

1: for t ∈ {1, . . . , T} do

2: for k ∈ {1, . . . ,K} do

3: Sample θ̃k from p(θk|x
(k)
1:t−1). ▷ Sampling from the posterior

4: Let yk = E(Xk,t; θ̃k).

5: end for

6: Let k′ = argmaxk{yk}.
7: Let xt = Xk′,t.

8: Update the posterior distribution of θk′ with xt.

9: end for

This is a better algorithm that the greedy algorithm, because it considers the whole posterior

distribution of the parameters, rather than just the average – balancing both exploration and

exploitation over time. From Agrawal and Goyal (2012) we see that the regret for the Thompson

Sampling algorithm grows O(log T), significantly better than the O(T) of the greedy algorithm.

2.3 Other Algorithms

There are various other algorithms that can be used to make decisions in the multi-armed bandit

problem. For example, the UCB1 (upper confidence bound) algorithm balances exploration and

exploitation by taking into account both the average reward and the number of visits so far

to each arm. From Auer et al. (2002) we see that regret for the UCB1 algorithm also grows

O(log T).

2.4 Bernoulli Example

A simple example of the multi-armed bandit problem is Bernoulli bandits: the reward from

each of the K arms follows a Bernoulli distribution with mean θk (the arms being i.i.d. of each

other).

If each θk has a Beta prior distribution with parameters αk, βk, then the posterior distribu-

tion for θk after t rounds is

p(θk|x
(k)
1:t) ∝ p(θk)L(x

(k)
1:t |θk)

∝ θα−1
k (1− θk)

β−1θ
∑

x
(k)
1:t

k (1− θk)
sk,t−

∑
x
(k)
1:t

= θ
α+

∑
x
(k)
1:t−1

k (1− θk)
β+sk,t−

∑
x
(k)
1:t−1.

This means the posterior distribution is

Beta
(
α+

∑
x
(k)
1:t , β + sk,t −

∑
x
(k)
1:t

)
,

which means that when updating the posterior distribution in the Thompson Sampling algo-

rithm, we can easily update the posterior without having to recalculate the parameters from

4

scratch (we add 1 to the first parameter when we have a reward of 1, and add 1 to the second

parameter when we have a reward of 0).

In Section 4, we will investigate this problem empirically, showing that the ε-Greedy algo-

rithm is O(T) and that the Thompson Sampling algorithm is O(log T). This example has been

explored further empirically in Chapelle and Li (2011).

3 Thompson Sampling Approximations

3.1 Sampling Difficulties

In the Thompson Sampling algorithm we sample from the posterior distribution for the param-

eters, given the data so far. However, with some complicated distributions, sampling from the

posterior distribution may not be possible. In this section we will investigate different methods

for Thompson Sampling in this case (as presented in Chapter 5 of Russo et al. (2018)). We will

specifically be using the Bernoulli example above – this means we can empirically compare the

approximations with how Thompson Sampling actually performs in Section 4.

3.2 Bootstrap Approximation

The first approximation algorithm that we investigate uses bootstrapping to replace the pos-

terior distribution in Thompson Sampling, based on the first algorithm in Eckles and Kaptein

(2014). For each arm k, we create J replicates of the parameters of the posterior (in this case,

the Beta distribution has parameters α and β). At each point in time we randomly choose one

replicate for each arm and choose the arm with the greatest posterior estimate for the mean;

we then update all the replicates for the chosen arm each with probability 1/2.

Algorithm 3 TS Bootstrap Approximation

1: Let αk,j = 1 and βk,j = 1 for all k ∈ {1, . . . ,K}, j ∈ {1, . . . , J}.
2: for t ∈ {1, . . . , T} do

3: for k ∈ {1, . . . ,K} do

4: Sample jk uniformly from {1, . . . , J}. ▷ Randomly choosing one replicate

5: Let yk = αk,jk/(αk,jk + βk,jk). ▷ Estimating the mean of the posterior

6: end for

7: Let k′ = argmaxk{yk}.
8: Let xt = Xk′,t.

9: for j ∈ {1, . . . , J} do

10: Sample i uniformly from {0, 1}.
11: if i = 1 then ▷ Updating the replicates with probability 1/2

12: Let αk′,j = αk′,j + xt.

13: Let βk′,j = βk′,j + 1− xt.

14: end if

15: end for

16: end for

5

3.3 Laplace Approximation

The second approximation method that we consider is the Laplace approximation: we approx-

imate the complicated posterior using a normal distribution (which is clearly easy to sample

from).

If we are trying to sample from p(θ|x), then a second-order Taylor expansion for log p(θ|x)
around its mode θ0 is

log p(θ|x) ≈ log p(θ0|x)−
v

2
(θ − θ0)

2 +O(θ4),

where v = − d2

dθ2
log p(θ|x)|θ=θ0 . This means we have

p(θ|x) ∝ exp
(
−v

2
(θ − θ0)

2
)
,

so we can approximate p(θ|x) by a Normal distribution with mean θ0 and variance v−1 (see

Chapter 27 of MacKay (2005)).

In the Bernoulli bandit case, we are estimating the Beta distribution, so for each arm k we

have

θk,0 =
α− 1

α+ β − 2
, vk =

αk − 1

θ2k,0
+

βk − 1

(1− θk,0)2
.

Note that when αk = βk = 1, we have instead that θ0,k = 1/2 and vk = 0. We then let the

variance of the Normal distribution equal 1 (since v−1
k is undefined).

We can now follow the same algorithm as standard Thompson Sampling, except sampling

each θ̃k from a N(θ0,k, v
−1
k) distribution instead of p(θk|x

(k)
1:t−1) – the same as Algorithm 2,

changing only line 3.

3.4 Other Approximations

There are various other methods that can be used to approximate Thompson sampling: in

Mazumdar et al. (2020), Langevin Markov chain Monte Carlo is used to approximate the poste-

rior distribution the Thompson sampling algorithm, and in Riquelme et al. (2018), Thompson

sampling is approximated using Bayesian neural networks.

4 Empirical Comparison

We now compare the growth of regret over time between the ε-Greedy algorithm, Thompson

Sampling algorithm, and the two TS approximation algorithms on the Bernoulli bandit problem.

Each algorithm is averaged over 1000 macroreplications. For the Greedy algorithm we use

ε = 0.05, and for the TS bootstrap approximation algorithm we use 100 replicates per arm. In

all cases we assume no initial knowledge, and so use a flat Beta(1, 1) prior.

We first consider a case with two arms: one with mean 0.5, and the other with mean 0.6. We

run each algorithm for 1000 time-points. The plot below show the total regret over time – we see

that the greedy and Thompson sampling algorithms behave as we expect; the former growing

6

O(T) and the latter growing O(log T). We also see that both TS approximation algorithms

perform very well (both have approximately the same regret as standard Thompson sampling).

The other case we consider has ten arms: nine with mean 0.5, and one with mean 0.6. Since

we have more arms, it will take longer to differentiate between them, so we run the algorithms

for 5000 time-points. Again we see the regret for the greedy and Thompson sampling algorithms

grow as we expect and that the Laplace approximation to Thompson sampling performs very

well. However, we also see that in this case the bootstrap approximation to Thompson sampling

performs significantly worse than standard Thompson sampling (while still growing O(log T)).

In Eckles and Kaptein (2014) we see that the regret of the bootstrap approximation approaches

the regret of standard Thompson sampling as the number of bootstrap replications increases.

7

5 Conclusion

In this report, we have explored several methods for decision-making in the multi-armed bandit

problem, including the ε-greedy method and through Thompson sampling. By measuring regret,

the difference between the expected total reward of the theoretically best course action and the

expected total reward of the actions we take, we found that Thompson sampling performs

significantly better than the ε-greedy method (the regret grows slower over time). We have also

explored several methods for approximating Thompson sampling when we cannot apply the

method directly, including using bootstrapping and using a Laplace approximation. Through

an empirical comparison we see that the Laplace approximation incurs less regret over time

than the bootstrap approximation in the Bernoulli bandit example.

References

Agrawal, S. and Goyal, N. (2012). Analysis of Thompson sampling for the multi-armed bandit

problem. Conference on Learning Theory, 23:39.1–39.26.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47:235–256.

Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson sampling. Advances in

Neural Information Processing Systems, 24.

Eckles, D. and Kaptein, M. (2014). Thompson sampling with the online bootstrap. arXiv

preprint arXiv:1410.4009.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

MacKay, D. J. (2005). Information theory, inference and learning algorithms. Cambridge

University Press.

Mazumdar, E., Pacchiano, A., Ma, Y., Jordan, M., and Bartlett, P. (2020). On approximate

Thompson sampling with Langevin algorithms. International Conference on Machine Learn-

ing, 1:6797–6807.

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep Bayesian bandits showdown: An

empirical comparison of Bayesian deep networks for Thompson sampling. arXiv preprint

arXiv:1802.09127.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al. (2018). A tutorial on

Thompson sampling. Foundations and Trends in Machine Learning, 11(1):1–96.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in

view of the evidence of two samples. Biometrika, 25(3-4):285–294.

8

