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Abstract

Markov Chains are a stochastic process where the probabilities of future values are independent of
past values. Homogeneous Markov Chains are introduced on a countable state space and over discrete
time, using transition probability matrices and distributions to classify states, calculate hitting times,
and calculate long-run probabilities of being in a given state (asymptotic distributions). Applications
of Markov Chains to simple random walks, branching processes, and Monte Carlo methods are also
explored.

1 Introduction

A Markov Chain is a sequence of random variables where the probabilities of future values are independent of
past values (given the present value). This report considers homogeneous Markov Chains over discrete time,
and with countable (either finite or countably infinite) state space. We analyse Markov Chains primarily by
using transition probability matrices, which consist of the probabilities of moving between specific states,
and distributions, which consist of the probabilities of being in each state after a given number of steps. In
Sections 2 and 3 we define other key terms, such as communicating classes, recurrent states, and aperiodic
states.

We explore further aspects of Markov Chains in later sections. In Section 4 we explore hitting times – the
number of transitions it takes a Markov Chain to reach a given subset of states – including a discussion of
the Gambler’s Ruin problem. In Section 5 we define invariant and asymptotic distributions, and prove the
conditions of their existence. Finally, in Section 6 we explore applications of Markov Chains: we determine
when symmetric simple random walks on Zd are recurrent, use Markov Chains to model population growth
(branching processes), and investigate Markov Chain Monte Carlo methods.

The majority of this report is based on Chapter 1 of [Nor97] and Chapter 12 of [GGDW14], including many
of the proofs. This report expands on this material by adding examples (created directly for this report
unless otherwised noted) and additional explanation.

2 Basic Definitions

2.1 The Markov Property

We begin with the definition of a discrete-time Markov Chain.

Definition 2.1.1. Consider a sequence of random variables (Xn)n≥0. (Xn)n≥0 is a Markov Chain (MC)
with state space I if

P(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0) = P(Xn = xn|Xn−1 = xn−1)

for all n ∈ N, x0, . . . , xn ∈ I.

This means the value of Xn is dependent on the value of Xn−1, but independent of Xn−2, . . . , X1, X0 – the
future is independent of the past given the current time state. This is called the Markov property.

Definition 2.1.2. A MC is homogeneous if the probabilities of transition between states are constant over
time. This means for any i, j ∈ I, the value of P(Xn = j|Xn−1 = i) is the same for all values of n.

Remark 2.1.3. We will assume that all Markov Chains are homogeneous, and that I is countable (either
finite or countably infinite), unless stated otherwise.

This means we can define the following matrix element-wise for each pair i, j:

Definition 2.1.4. The transition probability matrix (TPM) P of a MC (Xn) is defined element-wise by

Pi,j = P(X1 = j|X0 = i)
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for all i, j ∈ I.

When I is finite (with |I| = n for some n ∈ N) then we clearly have a well-defined n-by-n matrix. When I
is countably infinite we cannot write out the matrix in full, but we can define P element-wise. In this case
we still have for any i, j ∈ I that

(P 2)i,j =
∑
k∈I

Pi,kPk,j ,

where
∑

k∈I Pi,kPk,j is a convergent series. By iteration we may calculate Pm for any m ∈ N, noting that
P 0 is the identity matrix.

For any row i,
∑

j∈I Pi,j is the sum of the probabilities of moving to every possible value of X1, given that
X0 = i. This means

∑
j∈I Pi,j = 1.

We often draw graphs to visualise Markov Chains, with vertices representing states and directed lines from
vertex i to j whenever Pi,j > 0. Sometimes it is useful to label the directed lines with the corresponding
probabilities.

Example 2.1.5. A Markov Chain with I = {1, 2, 3} and TPM

P =

0.7 0.3 0
0.5 0 0.5
0 0.3 0.7


can be represented by the following graph:

1

2

3

The element Pi,j is the probability that, starting from state i, the MC is in state j after one step. We will
now generalise this to the probability of being in state j after m steps, for some m ∈ N.

Definition 2.1.6. The m-step transition probability matrix P (m) is defined element-wise by

P
(m)
i,j = P(Xm = j|X0 = i)

for all i, j ∈ I.

The m-step transition probability matrix can be calculated using the following theorem, the proof of which
is generalised from [Kor20] pg 44. This theorem means that we can use P (m) and Pm interchangeably, and
directly leads to the following corollary – the Chapman–Kolmogorov equation.

Theorem 2.1.7. For all m ∈ N, P (m) = Pm.

Proof. We will prove by induction. Clearly the base case m = 1 is true, since

P (1) = P(X1 = j|X0 = i) = P = P 1.

We will assume the nth case is true, so
P (n) = Pn, (2.1.1)

and attempt to show the (n+ 1)th case is true:

P
(n+1)
i,j = P(Xn+1 = j|X0 = i)
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=
∑
k∈I

P(Xn+1 = j,Xn = k|X0 = i)

=
∑
k∈I

P(Xn+1 = j|Xn = k,X0 = i)P(Xn = k|X0 = i),

and so by the Markov Property (Definition 2.1.1), we have

P
(n+1)
i,j =

∑
k∈I

P(Xn+1 = j|Xn = k)P(Xn = k|X0 = i)

=
∑
k∈I

Pi,kP
(n)
k,j

= (P P (n))i,j .

Thus by our assumption (2.1.1),

P
(n+1)
i,j = (P Pn)i,j

= Pn+1
i,j .

This means P (n+1) = Pn+1, and so we have proved P (m) = Pm for all m.

Corollary 2.1.8 (Chapman—Kolmogorov equation). For any m,n ∈ N0, we have

P (m+n) = P (m)P (n).

Proof. From Theorem 2.1.7, we have P (m+n) = Pm+n = PmPn = P (m)P (n).

2.2 Communicating Classes

Now we consider ↔, an important relation between states of a Markov Chain.

Definition 2.2.1. We say that i leads to j, i → j, if

P(Xn = j for some n ≥ 0|X0 = i) > 0.

We say that i communicates with j, i ↔ j, if both i → j and j → i.

Theorem 2.2.2. The relation ↔ is an equivalence relation on the state space I.

Proof. For any i ∈ I, P(X0 = i|X0 = i) = 1 > 0, which means i → i, and so i ↔ i. Therefore ↔ is reflexive.

If i ↔ j, then clearly j ↔ i. Therefore ↔ is symmetric.

We take the last argument from [GGDW14] pg 212. If i → j and j → k, then for some m,n ≥ 0, we have

P
(m)
i,j > 0 and P

(n)
j,k > 0. By Corollary 2.1.8, P (m+n) = P (m)P (n). Since all the entries of P are probabilities

(and so are non-negative), this means that P
(m+n)
i,k ≥ P

(m)
i,j P

(n)
j,k > 0, and so i → k. Therefore if i ↔ j and

j ↔ k, then i ↔ k, so ↔ is transitive.

Therefore ↔ is an equivalence relation.

We call the equivalence classes of ↔ in I communicating classes, which partition I.

Definition 2.2.3. A MC where I consists of one communicating class is called irreducible.

Now we consider closedness, a property communicating classes may have.
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Definition 2.2.4. Let C be a communicating class in I, i ∈ C, j ∈ I, and i → j. Then C is closed if j ∈ C.
(Otherwise, C is open.)

Definition 2.2.5. Let i ∈ I. Then if {i} is closed we call i absorbing.

Example 2.2.6. Consider a Markov Chain with I = {1, 2, 3, 4, 5}, TPM

P =


0 0.8 0.1 0 0.1
0.5 0 0 0.4 0.1
0 0 0.5 0.5 0
0 0 0.2 0.8 0
0 0 0 0 1

 ,

and graph:

5

1 2

3 4

The communicating classes are {1, 2} (which is open), {3, 4} (which is closed), and {5} (which is closed).
This means the MC is not irreducible, and 5 is an absorbing state.

3 Classification of States

3.1 The Strong Markov Property

In this section we will classify states in Markov Chains as either recurrent or transient, and as either periodic
or aperiodic. These definitions explore important behaviour of Markov Chains, and are used in Section 5
to determine the existence of invariant and asymptotic distributions. Before defining these terms we will
expand our definition of the Markov Property by Theorem 3.1.2, which will be used in Section 3.2.

Definition 3.1.1. Let (Xn) be a MC with sample space Ω. A random variable T : Ω → N0 ∪ {∞} is
a stopping time if for all n ∈ N0 the event {T = n} is independent of Xn+1, Xn+2, . . . (dependent on
X0, . . . , Xn only).

Examples of stopping times include hitting times and return times, which will be explored in Section 4. This
definition leads to the following theorem (with proof from [GGDW14] pg 225):

Theorem 3.1.2 (Strong Markov property). Let (Xn) be a Markov Chain with TPM P , let T be a stopping
time, and let (Yn) be a sequence of random variables defined by Yn = XT+n for all n ∈ N0. If T < ∞ and
XT = i0, then (Yn) is a Markov Chain with TPM P and Y0 = i0, and is independent of X0, X1, . . . , XT .

Proof. Let i1, i2, · · · ∈ I. Then for any n ∈ N

P(Yn = in|Yn−1 = in−1, Yn−2 = in−2, . . . , Y0 = i0)

= P(XT+n = in|XT+n−1 = in−1, XT+n−2 = in−2, . . . , XT = i0)

= P(Xn = in|Xn−1 = in−1, Xn−2 = in−2, . . . , X0 = i0),

where again the final step is by the assumption that the MC is homogeneous. By the Markov Property
(Definition 2.1.1), we have

P(Yn = in|Yn−1 = in−1, Yn−2 = in−2, . . . , Y0 = i0) = P(Xn = in|Xn−1 = in−1),
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= P(XT+n = in|XT+n−1 = in−1),

where the final step is by the assumption that the MC is homogeneous. This means

P(Yn = in|Yn−1 = in−1, Yn−2 = in−2, . . . , Y0 = i0) = P(Yn = in|Yn−1 = in−1).

Therefore (Yn) is a Markov Chain (clearly with TPM P and Y0 = i0).

Let H be an event dependent on X0, X1, . . . , XT−1 only. Then we have

P(Y1 = i1, Y2 = i2, . . . ,H|T < ∞, XT = i0)

=

∞∑
m=0

P(Y1 = i1, Y2 = i2, . . . ,H, T = m|T < ∞, XT = i0)

=

∞∑
m=0

P(XT+1 = i1, XT+2 = i2, . . . ,H, T = m|T < ∞, XT = i0)

=

∞∑
m=0

P(Xm+1 = i1, Xm+2 = i2, . . . ,H ∩ {T = m}|T < ∞, XT = i0).

Since T is a stopping time, the event H ∩ {T = m} depends on X0, . . . , Xm−1 only. Therefore

P(Y1 = i1, Y2 = i2, . . . ,H|T < ∞, XT = i0)

=

∞∑
m=0

P(Xm+1 = i1, Xm+2 = i2, . . . )P(H ∩ {T = m}|T < ∞, XT = i0)

=

∞∑
m=0

P(XT+1 = i1, XT+2 = i2, . . . , T = m)P(H,T = m|T < ∞, XT = i0)

=

∞∑
m=0

P(Y1 = i1, Y2 = i2, . . . , T = m)P(H,T = m|T < ∞, XT = i0)

= P(Y1 = i1, Y2 = i2, . . . )P(H|T < ∞, XT = i0),

which means (Yn) is independent of X0, X1, . . . , XT , as required.

This means the Markov Property holds at a random stopping time T , rather than simply at a known state
i – this is known as the Strong Markov property.

3.2 Recurrent and Transient States

Firstly, we will classify states in a Markov Chain by the likelihood that, after leaving the state, the chain
will eventually return to that state.

Definition 3.2.1. For a MC (Xn), a state i is recurrent if P(Xn = i for some n ≥ 1|X0 = i) = 1, and is
transient if P(Xn = i for some n ≥ 1|X0 = i) < 1.

This means a state is recurrent if the time taken to return is finite – we will return to this in Section 4.3.
Since the probability of any event is at most 1, all states are either recurrent or transient.

Remark 3.2.2. Consider a recurrent state i. If X0 = i, we know there exists some time T1 ∈ N such that
XT1

= i. This is clearly a stopping time, since it is random, and dependent on X0, . . . , XT1
only.

Therefore by the Strong Markov Property (Theorem 3.1.2), we may consider a new MC starting fromXT1
= i,

and so we know there exists some random T2 such that XT1+T2
= i.
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Continuing this process, we see that (Xn) is guaranteed to enter state i infinitely many times, and so

P(Xn = i for infinitely many n|X0 = i) = 1.

Remark 3.2.3. Conversely, if i is transient, then

P(Xn = i for infinitely many n|X0 = i) = lim
m→∞

P(Xn = i for some n ≥ 1|X0 = i)m = 0,

since P(Xn = i for some n ≥ 1|X0 = i) < 1.

Example 3.2.4. We continue from Example 2.2.6. States 1 and 2 are transient, since if they first move to
state 5 (with probability 0.1) then they will never return. Also, state 5 is clearly recurrent, since P(X1 =
5|X0 = 5) = 1.

Now consider state 3. Both states 3 and 4 can only go to states 3 and 4, so the probability of starting in
state 3, then never returning, is 0.5 (from state 3 to state 4) times 0.5 (staying in state 4) times 0.5 (staying
in state 4), and so on – this converges to 0. This means the probability of eventually returning to state 3 is
1, and so state 3 is recurrent. Similarly, state 4 is recurrent.

The following theorem (with proof from [Ros14] pg 196-197) is used to determine whether a state is recurrent
or transient:

Theorem 3.2.5. A state i is recurrent if and only if
∑∞

n=0 P
(n)
i,i = ∞, and a state i is transient if and only

if
∑∞

n=0 P
(n)
i,i < ∞.

Proof. Let i be a recurrent state, and define In by In = 1 if Xn = i and by In = 0 if Xn ̸= i. Then
∑∞

n=0 In
is the number of times the MC is in state i. By Remark 3.2.2, (Xn) will be at state i infinitely many times,
so E(

∑∞
n=0 In|X0 = i) = ∞.

We also have, by the linearity of expectation,

E

( ∞∑
n=0

In

∣∣∣∣∣X0 = i

)
=

∞∑
n=0

E(In|X0 = i)

=

∞∑
n=0

(1 · P(In = 1|X0 = i) + 0 · P(In = 0|X0 = i))

=

∞∑
n=0

P(Xn = i|X0 = i)

=

∞∑
n=0

P
(n)
i,i .

Therefore i is recurrent if and only if
∑∞

n=0 P
(n)
i,i = ∞, and so i is transient if and only if

∑∞
n=0 P

(n)
i,i < ∞.

This is a very useful theorem, as by Theorem 2.1.7 we can easily calculate P (n) for any n ∈ N. We will
now use this theorem to show recurrence and transient of states for a specific example, and prove the link
between between communicating classes and recurrence/transience of states.

Example 3.2.6. Consider a Markov Chain with I = {1, 2, 3}, TPM

P =

0 0.5 0.5
0 0.5 0.5
0 0.5 0.5

 ,

and graph:
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1

2 3

Clearly P 2 = P , which means that Pn = P for all n. This means

∞∑
n=0

Pn
1,1 =

∞∑
n=0

0 = 0,

so by Theorem 3.2.5, state 1 is transient, and for i ∈ {2, 3},
∞∑

n=0

Pn
i,i =

∞∑
n=0

0.5 = ∞,

so by Theorem 3.2.5, states 2 and 3 are recurrent.

Theorem 3.2.7. Given a communicating class C, either all states are recurrent, or all states are transient.

Proof. We use the proof from [Nor97] pg 26-27. Let i, j ∈ C. Then i → j and j → i, so there exists n,m ∈ N
such that Pn

i,j > 0 and Pm
j,i > 0.

Let r ∈ N. Then Pn+r+m
i,i = (PnP rPm)i,i ≥ Pn

i,jP
r
j,jP

m
j,i (since the entries of P are probabilities and so are

non-negative).

Therefore

∞∑
r=0

P r
j,j ≤

∞∑
r=0

Pn+r+m
i,i

Pn
i,jP

m
j,i

=
1

Pn
i,jP

m
j,i

∞∑
r=0

Pn+r+m
i,i

=
1

Pn
i,jP

m
j,i

∞∑
s=n+m

P s
i,i

≤ 1

Pn
i,jP

m
j,i

∞∑
s=0

P s
i,i.

By Theorem 3.2.5, if i is transient,
∑∞

s=0 P
s
i,i < ∞, and so

∑∞
r=0 P

r
j,j < ∞, and so j is transient.

Therefore if one state in C is transient, all states in C must be transient – so either all states are transient
or all states are recurrent.

This means we may refer to entire classes as either recurrent or transient. We now explore the relationship
between closed and recurrent classes, with proofs of the following two theorems from [Nor97] pg 27.

Theorem 3.2.8. Every recurrent class is closed.

Proof. Let C be an open communicating class. Then there exists i ∈ C, j ∈ I\C such that i → j – this
means there exists m ∈ N such that P(Xm = j|X0 = i) > 0.

If the MC transitions to state j, it can never transition back to state i, since j /∈ C. This means

P({Xm = j} ∩ {Xn = i for infinitely many n}|X0 = i) = 0.

7



Therefore P(Xn = i for infinitely many n|X0 = i) < 1, and so by Remark 3.2.2, state i is not recurrent.

Therefore by contraposition we have that every recurrent class is closed.

Theorem 3.2.9. Every closed class with a finite number of states is recurrent.

Proof. Let C be a closed, finite class, and let X0 ∈ C. Since C has a finite number of states, there must
exist some i ∈ C such that

P(Xn = i for infinitely many n) > 0.

(Or else the MC would be at a finite number of states a finite number of times, which means the MC has
finitely many terms, a contradiction.)

By the Strong Markov Property (Theorem 3.1.2), we have

P(Xn = i for infinitely many n) = P(Xn = i for some n)P(Xn = i for infinitely many n|X0 = i),

which means
P(Xn = i for infinitely many n|X0 = i) > 0.

By Remark 3.2.3, this means i is recurrent, and therefore C is recurrent.

We see the results of these theorems in previous examples:

Example 3.2.10. We see that in Example 2.2.6 class {1, 2} is both open and transient, and classes {3, 4} and
{5} are both closed and recurrent. In Example 3.2.6, we clearly have the open class {1} – which is transient
– and the closed class {2, 3} – which is closed.

Note that Theorem 3.2.9 does not hold for infinite closed classes – we will see an infinite closed class that is
transient in Section 6.1.

3.3 Periodic and Aperiodic States

We may also classify states in a Markov Chain by the greatest common denominator of all possible times it
may take the MC to return to the state after leaving.

Definition 3.3.1. The period of a state i ∈ I is

di = gcd
{
n ≥ 1

∣∣∣P (n)
i,i > 0

}
.

Definition 3.3.2. A state is aperiodic if it has period 1, and periodic otherwise.

Definition 3.3.3. A Markov Chain is aperiodic if all states have period 1.

As with recurrent and transient states, the periodicity of states in the same communicating class are the
same:

Theorem 3.3.4. All states in the same communicating class have the same period.

Proof. We use the proof from [GGDW14] pg 229. Let i, j ∈ I be in some communicating class C. This
means i → j and j → i, so there exists n,m ∈ N such that Pn

i,j > 0 and Pm
j,i > 0. Let α = Pn

i,jP
m
j,i > 0.

Let r ∈ N0. Then
Pn+r+m
i,i = (PnP rPm)i,i ≥ Pn

i,jP
r
j,jP

m
j,i = αP r

j,j ,

because the entries of P are probabilities, and so are non-negative.
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If r = 0, we have Pn+m
i,i ≥ α. This means the MC can start from i and then return to i after n+m steps –

so di | (n+m).

This means if di ∤ r then di ∤ (r + n + m), and so the MC cannot start from i and then return to i after
n+ r +m steps, so Pn+r+m

i,i = 0. Therefore P r
j,j = 0, so dj ∤ r.

Similarly, if dj ∤ r then di ∤ r – for any r ∈ N0, di | r if and only if dj | r. Letting r = di means di | di if and
only if di | dj , and so we know di | dj . Similarly, we know dj | di, and so di = dj , as required.

Example 3.3.5. Consider a Markov Chain with I = {1, 2, 3, 4}, TPM

P =


0.4 0.2 0.2 0.2
0 0 1 0
0 0.6 0 0.4
0 0 1 0

 ,

and graph:

1

32 4

The MC can transition from state 1 directly back to state 1, so state 1 is clearly aperiodic. States 2, 3, and
4 are periodic with period 2 because they can only return to themselves after an even number of steps (as
seen from the graph). The communicating classes are {1} and {2, 3, 4}, and we see that all states in {2, 3, 4}
have a period of 2.

4 Hitting Times

4.1 Hitting Times and Probabilities

We now discuss the number of transitions (the time taken) between states.

Definition 4.1.1. The hitting time of A ⊂ I is

HA = inf{n ∈ N0|Xn ∈ A},

where inf{∅} = ∞.

This means HA is the time number of steps it takes to reach a state in A. The event {HA = n} (for
some n ∈ N0) is dependent only on the values of X0, . . . , Xn, and so by Definition 3.1.1, HA is a stopping
time.

From our definition of HA we can make the following definitions:

Definition 4.1.2. The hitting probability of A ⊂ I starting from the state i is

hA
i = P(HA < ∞|X0 = i).

We denote hA = (hA
i : i ∈ I).

Definition 4.1.3. The expected hitting time of a A ⊂ I starting from the state i is

kAi = E(HA|X0 = i).

We denote kA = (kAi : i ∈ I).

9



We calculate hitting probabilities and expected hitting times using the following theorems from [Nor97], pg
13-14 and 17-18 respectively:

Theorem 4.1.4. The vector of hitting probabilities hA, calculated element-wise for some i ∈ I, is the
minimum (non-negative) solution to

hA
i =

1 if i ∈ A,∑
j∈I

Pi,jh
A
j if i /∈ A. (4.1.1)

Proof. If X0 = i ∈ A, then HA = 0, so hA
i = P(0 < ∞) = 1.

If X0 = i /∈ A, then HA ≥ 1, so we have

P(HA < ∞|X0 = i) =
∑
j∈I

P(HA < ∞, X1 = j|X0 = i)

=
∑
j∈I

P(HA < ∞|X1 = j,X0 = i)P(X1 = j|X0 = i)

=
∑
j∈I

P(HA < ∞|X1 = j)P(X1 = j|X0 = i)

=
∑
j∈I

Pi,jP(HA < ∞|X0 = j),

which means

hA
i =

∑
j∈I

Pi,jh
A
j ,

as required.

Let x be any solution of (4.1.1). If i ∈ A, then xi = 1 = hA
i . If i /∈ A, then for any n ∈ N we have

xi =
∑
j∈I

Pi,jxj

=
∑
j∈A

Pi,jxj +
∑

j∈I\A

Pi,jxj .

When j ∈ A, xj = 1, which means

xi =
∑
j∈A

Pi,j +
∑

j∈I\A

Pi,j

(∑
k∈I

Pj,kxk

)

=
∑
j∈A

Pi,j +
∑

j∈I\A

Pi,j

∑
k∈A

Pj,kxk +
∑

k∈I\A

Pj,kxk


=
∑
j∈A

Pi,j +
∑

j∈I\A

Pi,j

∑
k∈A

Pj,k +
∑

j∈I\A

Pi,j

∑
k∈I\A

Pj,kxk

= P(X1 ∈ A|X0 = i) + P(X1 /∈ A,X2 ∈ A|X0 = i) +
∑

j∈I\A

Pi,j

∑
k∈I\A

Pj,kxk.

After n steps, we have

xi = P(X1 ∈ A|X0 = i) + · · ·+ P(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A|X0 = i)
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+
∑

j1∈I\A

Pi,j1 · · ·
∑

jn−1∈I\A

Pjn−2,jn−1

∑
jn∈I\A

Pjn−1,jnxjn

≥ P(X1 ∈ A|X0 = i) + · · ·+ P(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A|X0 = i)

= P(HA = 1|X0 = i) + · · ·+ P(HA
i = n|X0 = i)

= P(HA ≤ n|X0 = i).

Taking limits, we have

xi ≥ lim
n→∞

P(HA ≤ n|X0 = i) = P(HA < ∞|X0 = i) = hA
i ,

and so xi ≥ hA
i for all i ∈ I, as required.

Example 4.1.5. We continue from Example 2.2.6, letting A = {3, 4} ⊂ I.

From the graph we see that hA
5 = 0, since 5 ↛ 3 and 5 ↛ 4. From Theorem 4.1.4, we have hA

3 = 1, hA
4 = 1,

and so

hA
1 = 0.8hA

2 + 0.1,

hA
2 = 0.5hA

1 + 0.4.

Solving these equations gives hA
1 = 0.7 and hA

2 = 0.75, so

hA = (0.7 0.75 1 1 0).

Theorem 4.1.6. The vector of expected hitting times kA, calculated element-wise for some i ∈ I, is the
minimum (non-negative) solution to

kAi =


0 if i ∈ A,

1 +
∑

j∈I\A

Pi,jk
A
j if i /∈ A. (4.1.2)

Proof. If X0 = i ∈ A, then HA = 0, so kAi = E(0) = 0.

If X0 = i /∈ A, then HA ≥ 1, so we have

E(HA|X0 = i) =
∑
j∈I

E(HA · 1X1=j |X0 = i)

=
∑
j∈I

E(HA|X1 = j,X0 = i)P(X1 = j|X0 = i)

=
∑
j∈A

E(HA|X1 = j,X0 = i)P(X1 = j|X0 = i) +
∑

j∈I\A

E(HA|X1 = j,X0 = i)P(X1 = j|X0 = i).

If X1 = j ∈ A and X0 /∈ A, then HA = 1, so the expected hitting time is 1. If X1 = j /∈ A and X0 /∈ A,
then by the Strong Markov Property we can consider the MC starting from X0 = j, and add 1 to the new
expected hitting time. Therefore

E(HA|X0 = i) =
∑
j∈A

1 · Pi,j +
∑

j∈I\A

(E(HA|X0 = j) + 1)Pi,j

=
∑
j∈A

Pi,j +
∑

j∈I\A

Pi,j +
∑

j∈I\A

E(HA|X0 = j)Pi,j

11



= 1 +
∑

j∈I\A

E(HA|X0 = i)Pi,j ,

which means

kAi = 1 +
∑

j∈I\A

Pi,jk
A
j ,

as required.

Let y be any solution of (4.1.2). If i ∈ A, then yi = 0 = kAi . If i /∈ A, then for any n ∈ N we have

yi = 1 +
∑

j∈I\A

Pi,jyj

= 1 +
∑

j∈I\A

Pi,j

1 +
∑

k∈I\A

Pj,kyk


= 1 +

∑
j∈I\A

Pi,j +
∑

j∈I\A

Pi,j

∑
k∈I\A

Pj,kyk

= P(HA ≥ 1|X0 = i) + P(HA ≥ 2|X0 = i) +
∑

j∈I\A

Pi,j

∑
k∈I\A

Pj,kyk.

After n steps, we have

yi = P(HA ≥ 1|X0 = i) + P(HA ≥ 2|X0 = i) + · · ·+ P(HA ≥ n|X0 = i)

+
∑

j1∈I\A

Pi,j1 · · ·
∑

jn−1∈I\A

Pjn−2,jn−1

∑
jn∈I\A

Pjn−1,jnyi

≥ P(HA ≥ 1|X0 = i) + P(HA ≥ 2|X0 = i) + · · ·+ P(HA ≥ n|X0 = i)

=

n∑
k=1

P(HA ≥ k|X0 = i).

Taking limits, we have

yi ≥ lim
n→∞

n∑
k=1

P(HA ≥ k|X0 = i) = E(HA|X0 = i) = kAi ,

and so yi ≥ kAi for all i ∈ I, as required.

Example 4.1.7. We continue from Example 3.3.5, letting A = {4} ⊂ I.

From Theorem 4.1.6, we have kA4 = 0, and so

kA1 = 1 + 0.4kA1 + 0.2kA2 + 0.2kA3 ,

kA2 = 1 + kA3 ,

kA3 = 1 + 0.6kA2 .

Solving these equations gives kA1 = 4 2
3 , k

A
2 = 5, and hA

3 = 4, so

kA =

(
14

3
5 4 0

)
.
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4.2 The Gambler’s Ruin Problem

Consider a game where £1 is repeatedly wagered on a (possibly biased) coin flip. What is the probability
that the player runs out of money? If the player commits to stop playing after making a certain amount of
money, what is the probability of this happening? This is the Gambler’s Ruin Problem, which we will now
explore.

We let (Xn) be the Markov Chain representing the total amount of money the player has at time n. For
now, we assume the player will happily leave the game when they acquire a wealth of £N , and that they
must leave when they have £0, so let I = {0, 1, . . . , N}.

If p is the probability of flipping a heads (and making £1), 0 < p < 1, then (Xn) has transition probability
matrix P , where

Pi,j =


1 if i = j = 0 or i = j = N

p if j = i+ 1 and i ̸= 0

q = 1− p if j = i− 1 and i ̸= N

0 otherwise

for each i, j ∈ I.

This gives the following graph:

0 1 2 3 · · · N-1 N1 q

p

q

p

q

p

q

p

q

p
1

First, we calculate the probability of the MC eventually reaching state N or state 0 (from [GGDW14] pg
173-174).

Theorem 4.2.1. Given the MC (Xn) above, we have

P(Xn = N for some n ∈ N0|X0 = a) =

{
a
N if p = q = 1

2
(q/p)a−1
(q/p)N−1

otherwise.

Proof. Let v(a) = P(Xn = N for some n ∈ N0|X0 = a) for all a ∈ I.

Since 0 and N are both clearly absorbing states, v(0) = 0 and v(N) = 1.

Otherwise, by Theorem 4.1.4 we have

v(a) =

N∑
j=0

Pi,jv(j)

= v(a+ 1)p+ v(a− 1)q.

This is a recurrence relation – rearranging we have p ·v(a+1)−v(a)+q ·v(a−1) = 0, which has characteristic
equation px2 − x+ q = 0.

By the quadratic formula,

x =
1±

√
1− 4p(1− p)

2p

=
1±

√
(2p− 1)2

2p
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= 1 or
1− p

p
.

If p = q = 1
2 ,

1−p
p = p

p = 1, so we have one solution. This means

v(a) = A · 1a + aB · 1a = A+ aB

for some A,B.

The initial condition v(0) = 0 means that A = 0 and v(N) = 1 means that B = 1
N , so we have

v(a) =
a

N
,

as required.

If p ̸= q, there are 2 solutions for x, so we have

v(a) = C · 1a +D ·
(
1− p

p

)a

= C +D

(
q

p

)a

for some C,D.

The initial conditions v(0) = 0 and v(N) = 1 mean that

0 = C +D,

1 = C +D

(
q

p

)N

,

so D = 1
(q/p)N−1

and C = − 1
(q/p)N−1

.

Therefore

v(a) = − 1

(q/p)
N − 1

+
1

(q/p)
N − 1

(
q

p

)a

=
(q/p)a − 1

(q/p)N − 1
,

as required.

Corollary 4.2.2. For the same MC we have

P(Xn = 0 for some n ∈ N0|X0 = a) =

{
N−a
N if p = q = 1

2
(p/q)N−a−1
(p/q)N−1

otherwise.

Proof. Reaching N starting from a is equivalent to reaching 0 starting from N − a if we swap p and q –
which gives the required result.

Corollary 4.2.3. The MC above will eventually be in either state 0 or N with probability 1.

Proof. For any state a, we have

P(Xn = 0 or Xn = N for some n ∈ N0|X0 = a)

= P(Xn = 0 for some n ∈ N0|X0 = a) + P(Xn = N for some n ∈ N0|X0 = a)
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=

{
N−a
N + a

N if p = q = 1
2

(p/q)N−a−1
(p/q)N−1

+ (q/p)a−1
(q/p)N−1

otherwise

=

{
N−a+a

N if p = q = 1
2

((p/q)N−a−1)((p/q)−N−1)+((p/q)−a−1)(p/q)N−1)
((p/q)−N−1)(p/q)N−1)

otherwise

= 1,

as required.

Since we know we are guaranteed to eventually reach either 0 or N , we calculate the expected time taken to
reach one of the absorbing states (from [GGDW14] pg 174-175).

Theorem 4.2.4. Let T be the number of steps until the MC reaches either 0 or N . Then

E(T |X0 = a) =

{
a(N − a) if p = q = 1

2
1

p−q

(
N (q/p)a−1

(q/p)N−1
− a
)

otherwise.

Proof. Let e(a) = E(T |X0 = a) for all a ∈ I. Clearly e(0) = e(N) = 0.

Otherwise, by Theorem 4.1.6,

e(a) = 1 +

N−1∑
j=1

Pa,je(j)

= 1 + e(a− 1)q + e(a+ 1)p,

so we have p · e(a+ 1)− e(a) + q · e(a− 1) + 1 = 0.

This is an inhomogeneous recurrence relation – first we solve the homogeneous form,

p · e(a+ 1)− e(a) + q · e(a− 1) = 0.

From the proof of Theorem 4.2.1, we have

e(a) =

{
A+ aB if p = q = 1

2

C +D(q/p)a otherwise

for some constants A,B,C,D.

For the case when p = q = 1
2 , we let e(a) = i2a

2 + i1a + i0 be a particular solution, for some constants
i0, i1, i2. Then

0 = p · e(a+ 1)− e(a) + q · e(a− 1) + 1

=
i2(a+ 1)2 + i1(a+ 1) + i0

2
− i2a

2 − i1a− i0 +
i2(a− 1)2 + i1(a− 1) + i0

2
+ 1

= i2a
2 + i2 + i1a+ i0 − i2a

2 − i1a− i0 + 1

= i2 + 1,

so we have i0 = 0, i1 = 0, i2 = −1.

This means e(a) = A+ aB − a2. From e(0) = 0 we have A = 0, and then from e(N) = 0 we have B = N .

Therefore

e(a) = 0 + aN − a2 = a(N − a),
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as required.

If p ̸= q, we let e(a) = k1a+ k0 be a particular solution, for some constants k0, k1. Then

0 = p · e(a+ 1)− e(a) + q · e(a− 1) + 1

= p(k1(a+ 1) + k0)− k1a− k0 + q(k1(a− 1) + k0) + 1

= (p− q)k1 + 1,

so we have k0 = 0, k1 = −1
p−q .

This means e(a) = C +D
(

q
p

)a
− a

p−q .

From e(0) = 0 and e(N) = 0 we have

0 = C +D,

0 = C +D

(
q

p

)N

− N

p− q
,

which means

D =
N

(p− q)
· 1

(q/p)N − 1
,

C = − N

(p− q)
· 1

(q/p)N − 1
.

Therefore

e(a) = − N

(p− q)
· 1

(q/p)N − 1
+

N

(p− q)
· 1

(q/p)N − 1

(
q

p

)a

− a

p− q

=
1

p− q

(
−N +N(q/p)a

(q/p)N − 1
− a

)
=

1

p− q

(
N

(q/p)a − 1

(q/p)N − 1
− a

)
,

as required.

Instead of playing until reaching a certain amount, what if they played for as long as possible without going
bankrupt? We now calculate the probability the player goes bankrupt in this scenario (from [GGDW14] pg
223). We let I = N0 and (Xn) be the MC with TPM P , where

Pi,j =


1 if i = j = 0

p if j = i+ 1 and i ̸= 0

q = 1− p if j = i− 1

0 otherwise

for some 0 < p < 1 and for each i, j ∈ I.

This gives the following graph:

0 1 2 3 · · ·1 q

p

q

p

q

p

q
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Theorem 4.2.5. We have that

P(Xn = 0 for some n ∈ N0|X0 = a) =

{
(q/p)

a
if p > q

1 if p ≤ q.

Proof. Let h(a) = P(Xn = 0 for some n ∈ N0|X0 = a) for all a ∈ N0.

Similarly to the proof of Theorem 4.2.1 (using Theorem 4.1.4), we have h(0) = 1 and h(a) = h(a + 1)p +
h(a− 1)q, with

h(a) =

{
A+ aB if p = q = 1

2

C + (q/p)
a
D otherwise

for some constants A,B,C,D.

First consider p < q. This means q
p > 1, so if D > 0 we have that h(a) > 1 for some a, and if D < 0 we have

that h(a) < −1 for some a. So D = 0.

From h(0) = 1 we have C = 1. Then h(a) = 1 for all a ∈ N0, as required.

Similarly, if p = q = 1
2 , then we must have B = 0, and so A = 1, and so h(a) = 1 for all a ∈ N0, as required.

Finally consider p > q. Since h(0) = 1, we have 0 = C +D, so

h(a) =

(
q

p

)a

+ C

(
1−

(
q

p

)a)
.

By Theorem 4.1.4 we choose the value of C that minimises h(a), so we have C = 0.

Then h(a) = (q/p)a, as required.

Note that even when a fair coin is tossed (p = q), the player is guaranteed to eventually lose all their
money.

4.3 Return Times

We now consider the time taken between leaving a state and returning to it, with the following definitions
analogous to the definitions in Section 4.1.

Definition 4.3.1. The passage time to a state i ∈ I is

Ti = inf{n ∈ N|Xn = i},

where inf{∅} = ∞. If X0 = i, then Ti is called the return time of i (the time between leaving a state and
returning to it).

The main difference between hitting time and passage time is that hitting time from a given state to itself
is 0, but the passage time is some other value (at least 1). Comparing Definition 4.3.1 to Definition 4.1.1,
we take the infimum of n in N, rather than in N0.

The event {Ti = n} (for some i ∈ I, n ∈ N) is dependent only on the values ofX0, . . . , Xn, and so by Definition
3.1.1, Ti is a stopping time. From our definition of Ti we can make the following definitions:

Definition 4.3.2. The return probability to a state i ∈ I is

fi = P(Ti < ∞|X0 = i).

We denote f = (fi : i ∈ I).
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Definition 4.3.3. The expected return time to a state i ∈ I is

mi = E(Ti|X0 = i).

We denote m = (mi : i ∈ I).

Clearly these terms relate to the definition of recurrent states (Definition 3.2.1), which leads to the following
corollary and stronger form of recurrence:

Corollary 4.3.4. Let i ∈ I. If i is recurrent, then fi = 1, and if i is transient, then fi < 1.

Proof. The result follows from Definitions 3.2.1 and 4.3.2.

Definition 4.3.5. A state i ∈ I is positive recurrent is it is both recurrent and mi < ∞.

Remark 4.3.6. If the state space is finite, then clearly any recurrent state must be positive recurrent.

We will determine a method of calculating the expected return time in Section 5.3.

5 Invariant and Asymptotic Distributions

5.1 Distribution Definitions

Along with the transition probability matrix, our other main tool to analyse Markov Chains are distribu-
tions:

Definition 5.1.1. Let π = (πi : i ∈ I), where each πi ≥ 0 and
∑

i∈I πi = 1. Then π is a distribution on I.

If I is finite we clearly have a well-defined vector. If I is countably infinite we cannot write out the vector π
in full, but we can define π element-wise. In this case we still have for any j ∈ I that

(πP )j =
∑
i∈I

πiPi,j ,

where
∑

i∈I πiPi,j is a convergent series.

The distribution after n steps is π(n), where π
(n)
i = P(Xn = i) for each i ∈ I. Often with the value of π(0) is

known and we use the TPM to calculate further values by the following theorem:

Theorem 5.1.2. For a given value of π(m), we have that π(n+m) = π(m)P (n).

Proof. Considering π(m)P (n) element-wise we have

(π(m)P (n))i =
∑
j∈I

π
(m)
j P

(n)
j,i

=
∑
j∈I

P(Xm = j)P(Xn = i|X0 = j).

We have assumed all MCs are homogeneous (Remark 2.1.3), and so

(π(m)P (n))i =
∑
j∈I

P(Xm = j)P(Xn+m = i|Xm = j)

= P(Xn+m = i)

= π
(n+m)
i ,

so π(n+m) = π(m)P (n), as required.
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We now consider two specific types of distribution: invariant distributions and asymptotic distributions.

Definition 5.1.3. A distribution π is an invariant distribution for a MC if πP = π.

If π is invariant, then π(0) = π(1) = . . . , so the superscript is often omitted. When the state space is finite
(with |I| = n for some n ∈ N) we can often calculate π directly by solving the n simultaneous equations
from πP = π along with

∑
i∈I πi = 1. We now see an example of this method.

Example 5.1.4. We will obtain the invariant distribution of a MC with I = {1, 2, 3}, TPM

P =

 0 0.5 0.5
0.5 0.5 0
0.3 0.3 0.4

 ,

and graph:

1

2 3

Let π = (π1 π2 π3) be the invariant distribution. Then π = πP , so

π1 = 0.5π2 + 0.3π3, (5.1.1)

π2 = 0.5π1 + 0.5π2 + 0.3π3, (5.1.2)

π3 = 0.5π1 + 0.4π3. (5.1.3)

From (5.1.1) we have π3 = 5
6π1, and so from (5.1.3) we see that π2 = 3

2π1.

Since π1 + π2 + π3 = 1, we have that π1 + 3
2π1 + 5

6π1 = 1, and so π1 = 0.3. This means π2 = 0.45 and
π3 = 0.25 (which aligns with (5.1.2)).

Therefore the invariant distribution is (0.3 0.45 0.25).

Definition 5.1.5. Consider the sequence of distributions π(0), π(1), . . . . If π(n) → π as n → ∞ whatever
the initial distribution π(0), then π is an asymptotic distribution.

Asymptotic distributions are often difficult to calculate directly. We now look an example when the MC has
only two states; we will later see a different method of calculation (Theorem 5.1.7).

Example 5.1.6. We will obtain the asymptotic distribution of a MC with I = {1, 2}, TPM

P =

(
0.5 0.5
0.25 0.75

)
,

and graph:

1 2

Let π(n) = (π
(n)
1 1− π

(n)
1 ). From π(n+1) = π(n)P , we have

π
(n+1)
1 = 0.5π

(n)
1 + 0.25(1− π

(n)
1 )

= 0.25 + 0.25π
(n)
1 .
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Letting π(n) = xn, we have the inhomogeneous difference equation

4xn+1 − xn = 1. (∗)

The homogeneous form is 4xn+1 − xn = 0, which has auxiliary equation 4y − 1 = 0, which has solution
y = 0.25. Therefore the general solution is xn = A(0.25)n for some constant A.

We now wish to find a particular solution to 4xn+1 − xn = 1. Consider xn = B, for some constant B. Then
4B −B = 1, so B = 1

3 . Therefore

xn = A

(
1

4

)n

+
1

3

is the solution to (∗) for some A.

This means

π(n) =

(
1

3
+A

(
1

4

)n
2

3
−A

(
1

4

)n)
,

and so as n → ∞ we have asymptotic distribution

π =

(
1

3

2

3

)
.

We relate invariant and asymptotic distributions by the following theorem, with proof from [Kor20] pg
53.

Theorem 5.1.7. If a MC has an asymptotic distribution π, then π is the unique invariant distribution.

Proof. From Theorems 2.1.7 and 5.1.2, we have that π(n+1) = π(0)Pn+1 and π(n) = π(0)Pn. This means
π(n+1) = π(n)P . As n → ∞, both π(n) → π and π(n+1) → π, so we have π = πP . Thus π is an invariant
distribution.

To show π is unique, let π′ also be an invariant distribution. This means if π(0) = π′, then π(n) = π′ for all
n, and so π(n) → π′ as n → ∞. This means π′ is also the asymptotic distribution, and so π′ = π.

Invariant distributions are significantly easier to calculate than asymptotic distributions (either by directly
solving π = πP or by using the detailed balance equations in Section 5.2), so this theorem allows us to more
easily calculate asymptotic distributions. However, we can only use it if we know the asymptotic distribution
exists, which we will determine in Section 5.4.

Example 5.1.8. We continue from Example 5.1.6. Given asymptotic distribution π = ( 13
2
3 ), we have

πP =

(
1

3

2

3

)(
1
2

1
2

1
4

3
4

)
=

(
1

6
+

2

12

1

6
+

6

12

)
=

(
1

3

2

3

)
= π,

so π is the invariant distribution, as expected.
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5.2 Detailed Balance

In Example 5.1.4 we calculated an invariant distribution directly, by solving π = πP for π. In this section
we will use a different method to calculate invariant distributions: detailed balance.

Definition 5.2.1. Let (Xn) be a MC with TPM P . (Xn) is said to be in detailed balance with a distribution
π if

πiPi,j = πjPj,i

for all i, j ∈ I.

Theorem 5.2.2. If detailed balance holds with respect to a distribution π, then π is an invariant distribution.

Proof. We use the proof from [GGDW14] pg 241. For any j ∈ I we have

(πP )j =
∑
i∈I

πiPi,j .

Then since detailed balance holds,

(πP )j =
∑
i∈I

πjPj,i

= πj

∑
i∈I

Pj,i

= πj ,

and so πP = π. Therefore π is invariant, as required.

We will now use detailed balance to calculate the invariant distribution of a Markov Chain with a countably
infinite state space.

Example 5.2.3 (Reflected Random Walk). Let (Xn) be a MC on state space I = N0. We consider a random
walk where for any i ∈ I\{0}, there is a 1/3 chance of moving to state i+ 1 and a 2/3 chance of moving to
state i− 1. (At state 0, there is a 1/3 chance of moving to state 1 and a 2/3 chance of remaining at state 0.)

This means (Xn) has transition probability matrix P , where

Pi,j =


1/3 if j = i+ 1

2/3 if j = i− 1 or i = j = 0

0 otherwise

for each i, j ∈ I.

This gives the following graph:

0 1 2 3 · · ·2
3

1
3

2
3

1
3

2
3

1
3

2
3

1
3

2
3

We wish to calculate an invariant distribution π = (π0 π1 π2 · · · ). From the detailed balance equation we
have for any i ∈ I

πiPi,i+1 = πi+1Pi+1,i,
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and so

πi+1 =
Pi,i+1

Pi+1,i
πi =

1/3

2/3
πi =

1

2
πi.

Therefore (by iteration) we have

πi =
π0

2i
.

This means

1 =

∞∑
i=0

π0

2i
= π0

∞∑
i=0

1

2i
= 2π0,

and so π0 = 1/2.

Therefore the invariant distribution is

π =

(
1

2

1

4

1

8
· · ·
)
.

We now consider a more general case from [GGDW14] pg 242, where the probability of moving from a given
state is potentially different for different states.

Theorem 5.2.4 (Reflected Birth-Death Chain). Let (Xn) be a MC on state space I = N0, where for each
state i ∈ I\{0} there is a pi chance of moving to state i + 1 and a qi = 1 − pi chance of moving to state
i− 1. (At state 0, there is a p0 chance of moving to state 1 and a q0 = 1− p0 chance of remaining at state
0.) We assume that 0 < pi < 1 for all i ∈ N0.

This means (Xn) has transition probability matrix P , where

Pi,j =


pi if j = i+ 1

qi if j = i− 1 or i = j = 0

0 otherwise

for each i, j ∈ I, and graph:

0 1 2 3 · · ·q0

p0

q1

p1

q2

p2

q3

p3

q4

Then (Xn) has an invariant distribution if and only if

∞∑
i=1

p0p1 . . . pi−1

q1q2 . . . qi
< ∞.

Proof. We wish to calculate an invariant distribution π = (π0 π1 π2 · · · ). From the detailed balance equation
we have for any i ∈ I

πiPi,i+1 = πi+1Pi+1,i,

and so

πi+1 =
Pi,i+1

Pi+1,i
πi =

pi
qi+1

πi.
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Therefore we have

π1 =
p0
q1

π0,

π2 =
p1
q2

π1 =
p0p1
q1q2

π0,

π3 =
p2
q3

π2 =
p0p1p2
q1q2q3

π0,

and so for any i ∈ N,

πi =
p0p1 . . . pi−1

q1q2 . . . qi
π0.

We must have
∑

i∈I πi = 1, so

π0 +

∞∑
i=1

p0p1 . . . pi−1

q1q2 . . . qi
π0 = 1.

Therefore we have an invariant distribution if

∞∑
i=1

p0p1 . . . pi−1

q1q2 . . . qi
< ∞,

as required.

5.3 Existence of Invariant Distributions

In this section we wish to know under what conditions invariant distributions exist, and how to use invariant
distributions to calculate expected return times – the relationship shown in Theorems 5.3.6 and 5.3.7. The
proofs of these theorems (from [Nor97] across pg 37-38) use the vector γk, which is defined for some state
k ∈ I by

γk
i = E

(
Tk−1∑
n=0

1Xn=i

∣∣∣∣∣Xk = 0

)
for all i ∈ I. This means γk

i is the expected time spent in i between the MC leaving k and first returning to
k.

Remark 5.3.1. We clearly see that γk
k = 1.

Remark 5.3.2. For some i ∈ I, γk
i is the expected amount of time spent in i between the MC leaving k and

first returning to k – this means that ∑
i∈I

γk
i = E(Tk|k = 0) = mk.

Before we can prove Theorems 5.3.6 and 5.3.7, we prove the following three lemmas (from [Nor97] across pg
35-37):

Lemma 5.3.3. Let (Xn) be an irreducible MC where every state is recurrent and let k ∈ I. Then γk satisfies
γk = γkP .
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Proof. Let n ∈ N. Then the event {n ≤ Tk} is dependent only on X0, . . . , Xn−1, so by the Markov Property
we have

P(Xn = j|Xn−1 = i, n ≤ Tk, X0 = k) = P(Xn = j|Xn−1 = i) (5.3.1)

for some i, j ∈ I.

By the law of total probability we have

P(Xn = j, n ≤ Tk|X0 = k) =
∑
i∈I

P(Xn = j,Xn−1 = i, n ≤ T |X0 = k),

and then by Bayes’ theorem

P(Xn = j, n ≤ Tk|X0 = k) =
∑
i∈I

P(Xn = j|Xn−1 = i,X0 = k, n ≤ Tk)P(Xn−1 = i, n ≤ Tk|X0 = k).

This means by (5.3.1) we have

P(Xn = j, n ≤ Tk|X0 = k) =
∑
i∈I

P(Xn = j|Xn−1 = i)P(Xn−1 = i, n ≤ Tk|X0 = k)

=
∑
i∈I

Pi,jP(Xn−1 = i, n ≤ Tk|X0 = k) (5.3.2)

for some j ∈ I.

Therefore, using the fact that X0 = XTk
to change summation, for any j ∈ I,

γk
j = E

(
Tk−1∑
n=0

1Xn=j

∣∣∣∣∣Xk = 0

)

= E

(
Tk∑
n=1

1Xn=j

∣∣∣∣∣Xk = 0

)

= E

( ∞∑
n=1

1Xn=j,n≤Tk

∣∣∣∣∣Xk = 0

)

=

∞∑
n=1

P(Xn = j, n ≤ Tk|Xk = 0),

and then by (5.3.2),

γk
j =

∞∑
n=1

∑
i∈I

Pi,jP(Xn−1 = i, n ≤ Tk|X0 = k)

=
∑
i∈I

Pi,j

∞∑
n=1

P(Xn−1 = i, n ≤ Tk|X0 = k).

By changing the lower bound of summation, we have

γk
j =

∑
i∈I

Pi,j

∞∑
m=0

P(Xm = i,m ≤ Tk − 1|X0 = k)

=
∑
i∈I

Pi,jE

( ∞∑
m=0

1Xm=i,m≤Tk−1

∣∣∣∣∣Xk = 0

)
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=
∑
i∈I

Pi,jE

(
Tk−1∑
m=0

1Xm=i

∣∣∣∣∣Xk = 0

)
=
∑
i∈I

Pi,jγ
k
i

= (γkP )j ,

which means γk = γkP , as required.

Lemma 5.3.4. Let (Xn) be an irreducible MC, let k ∈ I, and let λ be a vector where λk = 1 and λ = λP .
Then λ ≥ γk.

Proof. Since λ = λP , for some j ∈ I\{k} and n ∈ N we have

λj =
∑
i1∈I

λi1Pi1,j

= Pk,j +
∑

i1∈I\{k}

λi1Pi1,j ,

since λk = 1. Then

λj = Pk,j +
∑

i1∈I\{k}

(∑
i2∈I

λi2Pi2,i1

)
Pi1,j

= Pk,j +
∑

i1∈I\{k},i2∈I

λi2Pi2,i1Pi1,j

= Pk,j +
∑

i1∈I\{k}

Pk,i1Pi1,j +
∑

i1∈I\{k},i2∈I\{k}

λi2Pi2,i1Pi1,j

= P(X1 = j, Tk ≥ 1|X0 = k) + P(X2 = j, Tk ≥ 2|X0 = k) + · · ·+
∑

i1∈I\{k},i2∈I\{k}

λi2Pi2,i1Pi1,j .

After n steps, we have

λj = P(X1 = j, Tk ≥ 1|X0 = k) + P(X2 = j, Tk ≥ 2|X0 = k) + · · ·+ P(Xn = j, Tk ≥ n|X0 = k)

+
∑

i1,i2,...,in∈I\{k}

λinPin,in−1 · · ·Pi2,i1Pi1,j

≥ P(X1 = j, Tk ≥ 1|X0 = k) + P(X2 = j, Tk ≥ 2|X0 = k) + · · ·+ P(Xn = j, Tk ≥ n|X0 = k)

= E(1X1=j,Tk≥1|X0 = k) + E(1X2=j,Tk≥2|X0 = k) + · · ·+ E(1Xn=j,Tk≥n|X0 = k).

As n → ∞,

E(1X1=j,Tk≥1|X0 = k) + E(1X2=j,Tk≥2|X0 = k) + · · ·+ E(1Xn=j,Tk≥n|X0 = k) → γk
j ,

so λj ≥ γk
j for any j ̸= k.

Clearly λk = 1 = γk
k . Therefore λ ≥ γk, as required.

Lemma 5.3.5. Let (Xn) be an irreducible MC where every state is recurrent, let k ∈ I, and let λ be a vector
where λk = 1 and λ = λP . Then λ = γk.
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Proof. From Lemma 5.3.4 we see λ ≥ γk, so let µ = λ− γk ≥ 0. Note that

µk = λk − γk
k = 1− 1 = 0.

Since every state is recurrent, γk = γkP (by Lemma 5.3.3). This means µ = µP .

(Xn) is irreducible, so for any j ∈ I, j → k. This means there exists n ∈ N such that P
(n)
j,k > 0. Therefore

0 = µk =
∑
i∈I

µiP
(n)
i,k ≥ µjP

(n)
j,k .

Since P
(n)
j,k > 0 and µj ≥ 0, we have µ = 0, which means λ = γk, as required.

This means we can now prove the following two theorems:

Theorem 5.3.6. Let (Xn) be an irreducible MC. If some state is positive recurrent, then (Xn) has an
invariant distribution.

Proof. Let k be a positive recurrent state. Since k is recurrent and (Xn) is irreducible, every state is recurrent
by Theorem 3.2.7. Then by Lemma 5.3.3, γk = γkP . Note that by Remark 5.3.2, we have

∑
i∈I γ

k
i = mk

Consider π, where πi = γk
i /mk for each i ∈ I. (We may divide by mk because we know it is finite, since k

is positive recurrent.) Then ∑
i∈I

πi =
1

mk

∑
i∈I

γk
i =

mk

mk
= 1,

and so π is a distribution.

Since γk
i = γk

i P for all i ∈ I, dividing by mk we have that πi = πiP for all i ∈ I. This means π is an
invariant distribution.

Theorem 5.3.7. Let (Xn) be an irreducible MC. If the invariant distribution π exists, then every state is
positive recurrent, and

πi =
1

mi

for all i ∈ I.

Proof. Let k ∈ I be any state, and let π be an invariant distribution.

We know that
∑

i∈I πi = 1, so πj > 0 for some j ∈ I. Since (Xn) is irreducible, j → k, so P
(n)
j,k > 0 for some

n ∈ N. Therefore

πk =
∑
i∈I

πiP
(n)
i,k ≥ πjP

(n)
j,k > 0.

This means we may define the vector λ by λ = π/πk. This means λk = πk/πk = 1 and

λP =
πP

πk
=

π

πk
= λ,

so by Lemma 5.3.4, λ ≥ γk.
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By Remark 5.3.2, we have

mk =
∑
i∈I

γk
i ≤

∑
i∈I

λi =
∑
i∈I

πi

πk
=

∑
i∈I πi

πk
=

1

πk
.

We know πk > 0, so mk is finite. This means every state k is positive recurrent, and so by Lemma 5.3.5
λ = γk. Therefore

mk =
∑
i∈I

γk
i =

∑
i∈I

λi =
∑
i∈I

πi

πk
=

∑
i∈I πi

πk
=

1

πk
.

This means the invariant distribution π is defined by πk = 1/mk for all k ∈ I, as required.

Therefore we can calculate expected return times if we know the invariant distribution, and leads to the
following corollary:

Corollary 5.3.8. Let (Xn) be an irreducible MC. Then (Xn) has an invariant distribution (π where πi =
1
mi

for all i ∈ I) if and only if some state is positive recurrent (if and only if every state is positive recurrent).

Proof. The result follows from Theorems 5.3.6 and 5.3.7.

Example 5.3.9. We continue from Example 5.1.4 – we previously found the invariant distribution to be
π = (0.3 0.45 0.25). Clearly the MC is irreducible, so by Theorem 5.3.7 we have

m =

(
10

3

20

9
4

)
.

5.4 Existence of Asymptotic Distributions

Similarly to the previous section, we will now investigate under what conditions asymptotic distributions
exist. This will be explored in two theorems: 5.4.4 and 5.4.7. Both theorems require the Markov Chain to
be irreducible, every state to be aperiodic, and every state to be positive recurrent. Theorem 5.4.4 includes
Markov Chains with countably infinite state spaces, while Theorem 5.4.7 requires I to be finite, but shows
convergence to the asymptotic distribution geometrically.

Before the theorems can proved, we need the following three lemmas:

Lemma 5.4.1. Let i ∈ I be an aperiodic state. Then there exists N ∈ N such that Pn
i,i > 0 for all n ≥ N .

Proof. We know that gcd{n ≥ 1|Pn
i,i > 0} = 1, so consider n1, n2, . . . , where P

nj

i,i > 0 for each nj . Then
there exists P ∈ N such that gcd{n1, . . . , nP } = 1 (or else gcd{n1, n2, . . . } > 1). So from number theory,
there exists l1, . . . , lP ∈ N0 and N ∈ N such that for any n ≥ N ,

n = l1n1 + l2n2 + · · ·+ lPnP .

This means we have
Pn
i,i ≥ (Pn1

i,i )
l1(Pn2

i,i )
l2 . . . (PnP

i,i )lP > 0

for all n ≥ N .

Lemma 5.4.2. Let (Xn) be an irreducible MC where every state is aperiodic. Then for any j, k ∈ I, there
exists M ∈ N such that Pm

j,k > 0 for all m ≥ M .
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Proof. We use the proof from [Nor97] pg 41. From Lemma 5.4.1, we have i ∈ I and N ∈ N such that Pn
i,i > 0

for all n ≥ N . Also, since (Xn) is irreducible, we have r, s ∈ N such that P r
j,i, P

s
i,k > 0. Then

P r+n+s
j,k ≥ P r

j,iP
n
i,iP

s
i,k > 0

for all n ≥ N . So Pm
j,k > 0 for all m ≥ M = r +N + s.

Lemma 5.4.3. Let (Xn) be an irreducible MC where every state is recurrent. Then

P(Tj < ∞) = 1

for all j ∈ I.

Proof. We use the proof from [Nor97] pg 28. Since (Xn) is irreducible, for any i, j ∈ I we have some m ∈ N
such that P

(m)
j,i > 0. Also, since every state is recurrent, by Remark 3.2.2 we have that

P(Xn = j for infinitely many n|X0 = j) = 1.

This means

1 = P(Xn = j for some n ≥ m+ 1|X0 = j)

=
∑
i∈I

P(Xn = j for some n ≥ m+ 1|Xm = i,X0 = j)P(Xm = i|X0 = j)

=
∑
i∈I

P(Tj < ∞|X0 = i)P
(m)
j,i .

But we know
∑

i∈I P
(m)
j,i = 1, so we must have P(Tj < ∞|X0 = i) = 1. Since this is true for all i ∈ I we

have that P(Tj < ∞) = 1, as required.

Now we can prove the first of the theorems, with proof based on [Nor97] pg 41-42:

Theorem 5.4.4. Let (Xn) be an irreducible MC where every state is aperiodic and positive recurrent. Then
(Xn) has an asymptotic distribution.

Proof. Let (Xn) have initial distribution λ(0) and TPM P . By Theorem 5.3.6 (Xn) has an invariant distri-
bution π. Let (Yn) be a MC with initial distribution π and TPM P , independent of (Xn).

We now construct a sequence of ordered pairs of random variables (Wn), where Wn = (Xn, Yn) for all n ∈ N0.
Clearly (Wn) has state space I × I For any h0 = (i0, j0), h1 = (i1, j1), . . . , hn = (in, jn) ∈ I × I, n ∈ N, we
have

P(Wn = hn|Wn−1 = hn−1, . . . ,W0 = h0)

= P(Xn = in, Yn = jn|Xn−1 = in−1, Yn−1 = jn−1, . . . , X0 = i0, Y0 = j0)

= P(Xn = in|Xn−1 = in−1, . . . , X0 = i0)P(Yn = jn|Yn−1 = jn−1, . . . , Y0 = j0),

and so by the Markov Property (Definition 2.1.1),

P(Wn = hn|Wn−1 = hn−1, . . . ,W0 = h0) = P(Xn = in|Xn−1 = in−1)P(Yn = jn|Yn−1 = jn−1)

= P(Xn = in, Yn = jn|Xn−1 = in−1, Yn−1 = jn−1)

= P(Wn = hn|Wn−1 = hn−1),

and so (Wn) is a Markov Chain.
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From the above equations we see that (Wn) has transition probability matrix Q, where

Q(i,k),(j,l) = Pi,jPk,l

for all i, j, k, l ∈ I. In addition, (Wn) has initial distribution µ(0), where

µ
(0)
i,k = λ

(0)
i πk

for all i, k ∈ I.

Let i, j, k, l ∈ I. Since (Xn) is irreducible and every state is aperiodic, by Lemma 5.4.2 there exists N,M ∈ N
such that Pn

i,j , P
m
k,l > 0 for all n ≥ N , m ≥ M . This means P r

i,j , P
r
k,l > 0 for all r ≥ R = max{N,M}.

Therefore
Qr

(i,k),(j,l) = P r
i,jP

r
k,l > 0

for all r ≥ R. This means (i, k) → (j, l), so (Wn) is irreducible.

Clearly (Wn) has an invariant distribution ν, where νi,k = πiπk for all i, k ∈ I. Therefore by Theorem 5.3.7
every state of (Wn) is positive recurrent.

Let b ∈ I and consider T(b,b) w.r.t. (Wn), the first passage time to (b, b). This means

T(b,b) = inf{n ∈ N|Wn = (b, b)} = inf{n ∈ N|Xn = Yn = b}.

Now consider the sequences of random variables (An), (Bn), (Cn) where for all n ∈ N0

An =

{
Xn if n < T(b,b),

Yn if n ≥ T(b,b),

Bn =

{
Yn if n < T(b,b),

Xn if n ≥ T(b,b),

Cn = (An, Bn).

Applying the Strong Markov Property – Theorem 3.1.2 – to (Wn) at time T(b,b), we see that ((XT(b,b)+n, YT(b,b)+n))

is a MC with TPM Q, initial distribution µ(T(b,b)), and is independent of (X0, Y0), (X1, Y1), . . . , (XT−1, YT−1).

By symmetry, ((YT(b,b)+n, XT(b,b)+n)) is also a MC with TPM Q, initial distribution µ(T(b,b)), and is indepen-
dent of (X0, Y0), (X1, Y1), . . . , (XT−1, YT−1). Therefore (Cn) is a MC with TPM Q and initial distribution
µ(0), and so (An) is a MC with TPM P and initial distribution λ(0).

We then have that for some n ∈ N, i ∈ I,

|λ(n)
i − πi| = |P(An = i)− P(Yn = i)|

= |P(An = i, n < T(b,b)) + P(An = i, n ≥ T(b,b))− P(Yn = i)|
= |P(Xn = i, n < T(b,b)) + P(Yn = i, n ≥ T(b,b))− P(Yn = i)|
= |P(Xn = i, n < T(b,b))− P(Yn = i, n < T(b,b))|,

and then by Bayes’ theorem,

|λ(n)
i − πi| = |P(Xn = i|n < T(b,b))P(n < T(b,b))− P(Yn = i|n < T(b,b))P(n < T(b,b))|

= P(n < T(b,b))|P(Xn = i|n < T(b,b))− P(Yn = i|n < T(b,b))|
≤ P(n < T(b,b))

= 1− P(T(b,b) ≤ n).
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Taking limits, we have

lim
n→∞

|λ(n)
i − πi| ≤ lim

n→∞
(1− P(T(b,b) ≤ n))

= 1− P(T(b,b) < ∞).

Since every state of (Wn) is recurrent, by Lemma 5.4.3 we have that P(T(b,b) < ∞) = 1, and so

lim
n→∞

|λ(n)
i − πi| ≤ 0.

Therefore regardless of the initial distribution λ(0), λ(n) → π as n → ∞, and so π is the asymptotic
distribution of (Xn), as required.

Example 5.4.5. Consider the MC from Example 5.2.3. Clearly every state can communicate with every other
state, so the MC is irreducible. State 0 is aperiodic, so by Theorem 3.3.4 every state is aperiodic. Since we
also found an invariant distribution π, by Theorem 5.4.4 π is also the asymptotic distribution of the MC.

This example shows that if an invariant distribution exists (when all states are positive recurrent), there
exists an asymptotic distribution, even when the state space is infinite. We will now look at a different proof
(based on [JGKS76] pg 70-71) that only applies when the state space is finite (after the following lemma,
which is from [JGKS76] pg 69-70).

Lemma 5.4.6. Let (Xn) be a MC with a finite number of states and TPM P , let ε > 0, and let Pi,j ≥ ε for
all i, j ∈ I. Let x be a column vector of length |I|, let M0 and m0 be the maximum and minimum elements
of x respectively, and let M1 and m1 be the maximum and minimum elements of Px respectively.

Then M1 ≤ M0, m1 ≥ m0, and M1 −m1 ≤ (1− 2ε)(M0 −m0).

Proof. Let y be the vector formed by replacing every element of x by with M0 (apart from one element m0).
Clearly x ≤ y.

Let k ∈ I such that yk = m0. Then for any i ∈ I we have

(Px)i ≤ (Py)i

=
∑
j∈I

Pi,jyj

= Pi,km0 +
∑

j∈I\{k}

Pi,jM0

= Pi,km0 + (1− Pi,k)M0

= M0 − Pi,k(M0 −m0).

Since Pi,k ≥ ε for all i ∈ I, we have

(Px)i ≤ M0 − ε(M0 −m0).

Choosing the i ∈ I to give the maximum value of (Px)i, we have

M1 ≤ M0 − ε(M0 −m0), (5.4.1)

and so M1 ≤ M0.

Let z be the vector formed by replacing every element of x by with m0 (apart from one element M0). Clearly
x ≥ z, so −x ≤ −z. Therefore using a similar method to above we have

−m1 ≤ −m0 − ε(−m0 +M0), (5.4.2)
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which means

m1 ≥ m0 + ε(M0 −m0),

and so m1 ≥ m0.

By adding (5.4.1) and (5.4.2) we have

M1 −m1 ≤ M0 −m0 − 2ε(M0 −m0) = (1− 2ε)(M0 −m0),

as required.

Theorem 5.4.7. Let (Xn) be an irreducible MC with a finite number of states, where every state is aperiodic.
Then (Xn) has an asymptotic distribution (that it converges to geometrically).

Proof. By Lemma 5.4.2, for each j, k ∈ I there exists nj,k ∈ N such that Pn
j,k > 0 for all n ≥ nj,k. Letting

N = maxj,k nj,k, we have that for Pn
j,k > 0 for all n ≥ N, j, k ∈ I.

Choose some m ≥ N and consider a new MC (Yn) with transition probability matrix Q = Pm and Y0 = X0.
This means Y1 = Xm, Y2 = X2m, Y3 = X3m, . . . .

Since Pm
j,k > 0 for all j, k ∈ I, we have Qj,k > 0 for all j, k ∈ I – so (Yn) can move to any other state at any

transition. I is a finite set, so there exists ε > 0 such that Qj,k ≥ ε for all j, k ∈ I.

Let ρ be a column vector of length |I|, where ρj = 1 for some j ∈ I and ρi = 0 for all i ∈ I\{j}. For any
n ∈ N0, let the maximum and minimum elements of Qnρ be Mn and mn respectively.

Since Qnρ = Q(Qn−1ρ), by Lemma 5.4.6 we have that Mn ≤ Mn−1, mn ≥ mn−1, and

Mn −mn ≤ (1− 2ε)(Mn−1 −mn−1).

Therefore by iteration we have

Mn −mn ≤ (1− 2ε)n(M0 −m0).

We must have ε < 0.5, or else each row of Q would sum to more than 1. This means 1 − 2ε < 1, and so
Mn −mn → 0 as n → ∞. This means Mn and mn approach the same value – let this value be aj ; we see
that 0 < mn ≤ aj ≤ Mn < 1 for all n ∈ N.

Since Qnρ is the j-th column of Qn, we see that every entry in the j-th column of Qn converges to aj ;
Qn

i,j → aj as n → ∞ for all i ∈ I. Also, we have that
∑

j∈I aj = 1 (this holds for rows of Qn, so must hold
for the limit).

Therefore if (Yn) has initial distribution π(0) – the same as (Xn), since X0 = Y0 – we have

lim
n→∞

π
(n)
j = lim

n→∞
(π(0)Qn)j

= lim
n→∞

∑
i∈I

π
(0)
i Qn

i,j

=
∑
i∈I

π
(0)
i aj

= aj
∑
i∈I

π
(0)
i

= aj ,

which means π(n) → (aj : j ∈ I) as n → ∞, regardless of the choice of π(0). Therefore (Yn) has an asymptotic
distribution (which we call π). Since the convergence is bounded by (1− 2ε)n, the convergence is geometric.
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We know that (Yn) is a subsequence of (Xn) with TPM Pm. We make take any m ≥ N , so all points of
(Xn) after N are in a MC of the form (Yn) with asymptotic distribution π. Therefore (Xn) must also have
an asymptotic distribution, π, which it converges to geometrically.

Example 5.4.8. We continue from Example 5.1.6, in which we found that the distribution after n transitions
is

π(n) =

(
1

3
+A

(
1

4

)n
2

3
−A

(
1

4

)n)
,

where the constant A is determined by the initial distribution π(0).

We see that the distribution converges to the asymptotic distribution geometrically, as expected from The-
orem 5.4.7.

6 Applications of Markov Chains

6.1 Simple Random Walks

We now look at wider applications of Markov Chains. Consider a random walk on Zd, considering separately
the cases d = 1, d = 2, and d ≥ 3. At any point (i1, . . . , id) ∈ Zd, the chain may transition to one of 2d
points

(i1 − 1, i2, . . . , id), (i1 + 1, i2, . . . , id), . . . , (i1, i2, . . . , id − 1), (i1, i2, . . . , id + 1),

each with probability 1
2d . This means we have transition probability matrix P , where

Pi,j =

{
1
2d if |i− j| = 1

0 otherwise

for all i, j ∈ Zd.

We will determine whether states in Zd are recurrent or transient (the full result known as Pólya’s theorem).
Firstly, we consider the d = 1 case, with the proof from [Nor97] pg 29-30.

0 1 2 · · ·-1-2· · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Theorem 6.1.1. Let (Xn) be the simple, symmetric random walk on Z, with TPM P as given above. Then
every state is recurrent.

Proof. In this case we have

P(Xn = Xn−1 − 1) =
1

2
,

P(Xn = Xn−1 + 1) =
1

2
,

at each step n ∈ N.

We first consider the state 0 (starting from X0 = 0).

After an odd number of steps, say 2n + 1, we must be at an odd state, so we cannot be at 0. So we have

P
(2n+1)
0,0 = 0.
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If after an even number of steps, say 2n, we are back at 0, we must have taken n steps up and n steps down.
The number of possible routes back to 0 is the number of possible ways to choose n steps up from a total of
2n steps,

(
2n
n

)
, and each step has probability 1

2 .

Therefore

P
(2n)
0,0 =

(
2n

n

)(
1

2

)2n

=
(2n)!

(n!)2 · 4n
.

By Stirling’s approximation (Lemma A.1.1), n! ∼ A
√
n(ne )

n, so we have

P
(2n)
0,0 ∼ A

√
2n · (2n)2n

e2n

(
en

A
√
n · nn

)2
1

4n

=
A
√
2
√
n · 4nn2n

e2n
e2n

A2n · n2n

1

4n

=

√
2

A

1√
n
.

Since
∑∞

n=1
1√
n
= ∞, we have

∞∑
n=0

P
(n)
0,0 =

∞∑
n=0

P
(2n)
0,0 = ∞.

So by Theorem 3.2.5, 0 is a recurrent state.

Therefore by Theorem 3.2.7, every state is recurrent.

Now we consider the case where d = 2, with the proof from [Nor97] pg 31-32 (following directly from the
proof of Theorem 6.1.1).

Theorem 6.1.2. Let (Xn) be the simple, symmetric random walk on Z2, with TPM P as given above. Then
every state is recurrent.

Proof. In this case we have

P(Xn = Xn−1 + (1, 0)) =
1

4
,

P(Xn = Xn−1 + (−1, 0)) =
1

4
,

P(Xn = Xn−1 + (0, 1)) =
1

4
,

P(Xn = Xn−1 + (0,−1)) =
1

4
.

at each step n ∈ N. Similarly to the walk in Z, we first consider the state 0 = (0, 0) (starting from X0 = 0).

Clearly P
(2n+1)
0,0 = 0, so we only need to consider P

(2n)
0,0 = 0.

Let (X+
n ) and (X−

n ) be the orthogonal projections of (Xn) on the lines (in Z2) y = x and y = −x respectively.
Clearly (X+

0 ) = 0 and (X−
0 ) = 0.

So we have that

Xn = Xn−1 + (1, 0) =⇒ X+
n = X+

n−1 +
1√
2
and X−

n = X−
n−1 +

1√
2
,
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Xn = Xn−1 + (−1, 0) =⇒ X+
n = X+

n−1 −
1√
2
and X−

n = X−
n−1 −

1√
2
,

Xn = Xn−1 + (0, 1) =⇒ X+
n = X+

n−1 +
1√
2
and X−

n = X−
n−1 −

1√
2
,

Xn = Xn−1 + (0,−1) =⇒ X+
n = X+

n−1 −
1√
2
and X−

n = X+
n−1 +

1√
2
,

which means

P
(
X+

n = X+
n−1 +

1√
2

)
=

1

2

P
(
X+

n = X+
n−1 −

1√
2

)
=

1

2

and

P
(
X−

n = X−
n−1 +

1√
2

)
=

1

2

P
(
X−

n = X−
n−1 −

1√
2

)
=

1

2
.

This means (X+
n ) and (X−

n ) are (independent) symmetric simple random walks on 1√
2
Z.

Xn = 0 if and only if both X+
n = 0 and X−

n = 0, and so

P
(2n)
0,0 = P(X+

n = 0)P(X−
n = 0)

=

((
2n

n

)(
1

2

)2n
)2

.

Therefore from the proof of Theorem 6.1.1,

P
(2n)
0,0 ∼

(√
2

A

1√
n

)2

=
2

A2

1

n
.

Since
∑∞

n=1
1
n = ∞, we have

∞∑
n=0

P
(n)
0,0 =

∞∑
n=0

P
(2n)
0,0 = ∞.

So by Theorem 3.2.5, 0 is a recurrent state, and then by Theorem 3.2.7, every state is recurrent.

Finally, we consider the case where d ≥ 3. The method used in the proof of Theorem 6.1.2 does not work
in more than two dimensions, so we use a different proof – adapted from [Nor97] pg 32, which considers the
d = 3 case only.

Theorem 6.1.3. Let (Xn) be the simple, symmetric random walk on Zd, d ≥ 3, with TPM P as given
above. Then every state is transient.
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Proof. Again, we first consider the state 0 = (0, 0, . . . , 0) (starting from X0 = 0). Clearly P
(2n+1)
0,0 = 0, so

we only need to consider P
(2n)
0,0 .

If we take 2n steps from 0, returning to 0, consider the number of steps taken along each axis: if i steps
were taken in the positive direction, i steps must also have been taken in the negative direction. So if iq is
the number of steps taken in the q-direction, we have i1, . . . , im ≥ 0 such that i1 + · · ·+ id = n.

Over the 2n steps, we have i1 steps along the first axis in the positive direction, i1 steps along the first axis
in the negative direction, i2 steps along the first axis in the positive direction, and so on. This means the
number of possible paths is ∑

i1,...,id

(2n)!

(i1!)2 . . . (id!)2
,

where each path has probability
(

1
2d

)2n
.

Therefore

P
(2n)
0,0 =

(
1

2d

)2n ∑
i1,...,id

(2n)!

(i1!)2 . . . (id!)2

=
1

22n
1

d2n
(2n)!

(n!)2

∑
i1,...,id

(n!)2

(i1!)2 . . . (id!)2

=
1

4n
1

d2n

(
2n

n

) ∑
i1,...,id

(
n!

i1! . . . id!

)2

=
1

4n

(
2n

n

) ∑
i1,...,id

(
n

i1, . . . , id

)2(
1

dn

)2

.

The probability of placing n balls into d boxes any one specific way is
(

n
i1,...,id

)
1
dn for some i1, . . . , id ≥ 0.

This means 0 ≤
(

n
i1,...,id

)
1
dn ≤ 1, and so((

n

i1, . . . , id

)
1

dn

)2

≤
(

n

i1, . . . , id

)
1

dn
.

.

Therefore

P
(2n)
0,0 =

(
2n

n

)
1

4n

∑
i1,...,id

((
n

i1, . . . , id

)
1

dn

)2

≤
(
2n

n

)
1

4n

∑
i1,...,id

(
n

i1, . . . , id

)
1

dn
.

Also, we have that for any i1, . . . , id ≥ 0, if n = md, then(
n

i1, . . . , id

)
=

n!

i1! . . . id!
≤ n!

m! . . .m!
=

(
n

m, . . . ,m

)
.

Therefore if n = md,

P
(2n)
0,0 ≤

(
2n

n

)
1

4n

∑
i1,...,id

(
n

m, . . . ,m

)
1

dn

35



≤
(
2n

n

)
1

4n

(
n

m, . . . ,m

)
1

dn

=
(2n)!

(n!)2
1

4n
n!

(m!)d
1

dn

=
1

4ndn
(2n)!

n!(m!)d
.

By Stirling’s approximation (Lemma A.1.1), n! ∼ A
√
n(ne )

n, so we have

P
(2n)
0,0 ∼ 1

4ndn
A
√
2n · (2n)2n

e2n
en

A
√
n · nn

(
em

A
√
m ·mm

)d

=
1

4ndn
A
√
2
√
n · 4nn2n

e2n
en

A
√
n · nn

en

Ad
√
m

d ·mn

=

√
2

Ad
√
m

d

=

√
2
√
d
d

Ad

1

nd/2
.

Since
∑∞

n=1
1

n−a < ∞ for a > 1, we have
∞∑

m=0

P
(2md)
0,0 < ∞.

We see that

P
(2md)
0,0 ≥ P

(2)
0,0P

(2md−2)
0,0 ≥

(
1

2d

)2

P
(2md−2)
0,0 ,

P
(2md)
0,0 ≥ P

(4)
0,0P

(2md−4)
0,0 ≥

(
1

2d

)4

P
(2md−4)
0,0 ,

...

P
(2md)
0,0 ≥ P

(2d−2)
0,0 P

(2md−2d+2)
0,0 ≥

(
1

2d

)2d−2

P
(2md−2d+2)
0,0 ,

and so
∞∑

m=1

P
(2md−2)
0,0 ≤ (2d)2

∞∑
m=1

P
(2md)
0,0 < ∞,

∞∑
m=1

P
(2md−4)
0,0 ≤ (2d)4

∞∑
m=1

P
(2md)
0,0 < ∞,

...
∞∑

m=1

P
(2md−2d+2)
0,0 ≤ (2d)2d−2

∞∑
m=1

P
(2md)
0,0 < ∞.

Therefore
∞∑

n=0

P
(n)
0,0 =

∞∑
n=0

P
(2n)
0,0
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=

∞∑
m=0

P
(2md)
0,0 +

∞∑
m=1

P
(2md−2)
0,0 +

∞∑
m=1

P
(2md−4)
0,0 + · · ·+

∞∑
m=1

P
(2md−2d+2)
0,0

< ∞,

and so by Theorem 3.2.5, 0 is a transient state.

Therefore by Theorem 3.2.7, every state is transient.

Since the MC is irreducible, the single communicating class must be closed, and we see that Theorem 3.2.9
cannot be extended to infinite closed classes.

We can also extend Pólya’s theorem to other random walks in Zd. Let ζn = Xn−Xn−1 and B be the covari-
ance matrix of ζ1. If E(ζn) = 0, and all entries of B are finite, then by the local central limit theorem

P
(n)
0,0 =

1

(2πn)d/2
√

det(B)
+ o

(
1

nd/2

)
.

Since
∑∞

n=0 n
−d/2 is convergent if and only if d = 1 or d = 2, by Theorems 3.2.5 and 3.2.7 all states are

recurrent when d = 1 or d = 2, and all states are transient when d ≥ 3 (the same result as Pólya’s theorem).
For example, consider a random walk in Z where from any given state there is a 1

3 chance of increasing by 2
and a 2

3 chance of decreasing by 1 – the expected move is 0, so all states are recurrent. The proof of the local
central limit theorem is beyond the scope of this report – see [GL19] for a proof of this specific case.

6.2 Branching Processes

In another application of Markov Chains we consider a class of MCs (Xn) called branching processes, which
model the size of a population over time.

Definition 6.2.1. A MC (Xn) is a branching process if for each i ∈ I = N0, Xi+1 is the total offspring of
the population Xi, each of which produces j offspring (j ≥ 0) with probability pj .

Remark 6.2.2. Let Zi be the offspring of a single individual i. Then

E(Zi) = µ =

∞∑
j=0

jpj ,

Var(Zi) = σ2 =

∞∑
j=0

(j − µ)2pj ,

and

Xn|Xn−1 =

Xn−1∑
i=1

Zi,

where Z1, . . . , ZXn−1
are independently and identically distributed.

From this definition we will calculate the expected population (and variance in population size) after n
generations, with the proof from [Ros14] pg 235.

Theorem 6.2.3. Given a branching process (Xn) with X0 = 1, we have

E(Xn) = µn and Var(Xn) =

{
σ2µ 1−µn

1−µ if µ ̸= 1

nσ2 if µ = 1
.
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Proof. We will use proof by induction.

When n = 0, we have
E(X0) = E(1) = 1 = µ0

and

Var(X0) = Var(1) = 0 =

{
σ2µ 1−µ0

1−µ if µ ̸= 1

0 · σ2 if µ = 1
,

so the base case is satisfied.

We will assume that the k-th case is true, and so

E(Xk) = µk and Var(Xk) =

{
σ2µ 1−µk

1−µ if µ ̸= 1

kσ2 if µ = 1
.

For the case when n = k + 1 we use the tower property, and so

E(Xk+1) = E(E(Xk+1|Xk))

= E

(
E

(
Xk∑
i=1

Zi

))
.

By the linearity of expectation, we have

E(Xk+1) = E

(
Xk∑
i=1

E(Zi)

)

= E

(
Xk∑
i=1

µ

)
= E(µXk)

= µE(Xk),

and then by our assumption

E(Xk+1) = µµk = µk+1,

as required.

Similarly we use the conditional variance formula, and so

Var(Xk+1) = E(Var(Xk+1|Xk)) + Var(E(Xk+1|Xk))

= E

(
Var

(
Xk∑
i=1

Zi

))
+Var

(
E

(
Xk∑
i=1

Zi

))
,

and then by independence of Zi we have

Var(Xk+1) = E

(
Xk∑
i=1

Var(Zi)

)
+Var

(
Xk∑
i=1

E(Zi)

)

= E

(
Xk∑
i=1

σ2

)
+Var

(
Xk∑
i=1

µ

)
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= E(σ2Xk) + Var(µXk)

= σ2E(Xk) + µ2Var(Xk).

Therefore by our assumptions

Var(Xk+1) = σ2µk + µ2

{
σ2µ 1−µk

1−µ if µ ̸= 1

kσ2 if µ = 1

=

{
σ2µk + σ2µ3 1−µk

1−µ if µ ̸= 1

σ2 + kσ2 if µ = 1

=

{
σ2µ 1−µk+1

1−µ if µ ̸= 1

(k + 1)σ2 if µ = 1
,

as required.

This leads to the following corollary:

Corollary 6.2.4. Starting from X0 = 1, if µ < 1 then the expected number of individuals to ever exist is
1

1−µ .

Proof. We see that

E(number of individuals to exist|X0 = 1) =

∞∑
i=0

E(Xi) =

∞∑
i=0

µi =
1

1− µ
.

These results can be extended to the case where X0 = m for some m ∈ N by considering the initial m
families independently – by the linearity of expectation and variance (since the families are independent) we
simply multiply the results of Theorem 6.2.3 and Corollary 6.2.4 by m.

Now we consider the likelihood that a given branching process continues for an infinite amount of time, or
eventually reaches the absorbing state of 0 (“dying out”). This is called the extinction probability. The
following proof is expanded from [Ros14] pg 236, and we do not consider the case where µ ̸= 1.

Definition 6.2.5. Given a branching process (Xn) with X0 = 1, let π0 denote the extinction probability,
which is the probability that the population will eventually reach 0 and then remain at 0:

π0 = lim
n→∞

P(Xn = 0).

Theorem 6.2.6. If µ < 1, π0 = 1, and if µ > 1, π0 is the smallest π > 0 such that π =
∑∞

j=0 π
jpj.

Proof. By the law of total probability,

π0 = P(population eventually dies out|X0 = 1) =

∞∑
j=0

P(population eventually dies out|X1 = j)pj .

But P(population eventually dies out|X0 = j) = πj
0 (considering the j families independently).

Therefore π0 =
∑∞

j=0 π
j
0pj , as required.
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Let µ < 1. From Theorem 6.2.3, we have

µn = E(Xn)

=

∞∑
j=0

jP(Xn = j)

=

∞∑
j=1

jP(Xn = j)

≥
∞∑
j=1

P(Xn = j)

= P(Xn ̸= 0).

As n → ∞, µn → 0, and so have that P(Xn ̸= 0) → 0. This means P(Xn = 0) → 1 as n → ∞, and so
π0 = 1.

Now let µ > 1. First, we wish to show by induction that if π =
∑∞

j=0 π
jpj , then π ≥ P(Xn = 0) for all

n ∈ N0.

We know X0 = 1, so P(X0 = 0) = 0. Since π is a probability, π ≥ 0 = P(X0 = 0), as required.

Assume that for some k ∈ N0, π ≥ P(Xk = 0). Then

P(Xk+1 = 0) =

∞∑
j=0

P(Xk = 0)jpj

≤
∞∑
j=0

πjpj

= π,

so π ≥ P(Xk+1 = 0).

Therefore by induction we have that π ≥ P(Xn = 0) for all n ∈ N0.

This means limn→∞ π ≥ limn→∞ P(Xn = 0), which means π ≥ π0. Therefore π0 is the smallest π > 0 such
that π =

∑∞
j=0 π

jpj .

6.3 Markov Chain Monte Carlo

Consider a discrete random variable X on state space I, and consider

θ = E(h(X)) =
∑
i∈I

h(xi)P(X = xi),

which we wish to calculate for some function h. Many properties of X can be expressed as the expectation
of some function, including variance, where Var(X) = E(X2) − E(X)2, or the probability of some event A,
where P(X ∈ A) = E(1A).

If we can evaluate h at each point xi, this is simple; however often this is not the case. If we know θ has
distribution π(θ), we use Monte Carlo Methods: we generate n samples from this distribution, θ1, . . . , θn (for
some n ∈ N), which are used to calculate an estimate

θ̂ =
1

n

n∑
i=1

h(θi).
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Theorem 6.3.1. The estimate θ̂ is unbiased (which is equivalent to E(θ̂) = θ).

Proof. By the linearity of expectation

E(θ̂) = E

(
1

n

n∑
i=1

h(θi)

)

=
1

n

n∑
i=1

E(h(θi))

=
1

n

n∑
i=1

θ

= θ.

The preceding method only works if we can easily sample points from the distribution π. If we cannot do this
we instead use Markov Chain Monte Carlo, using the method presented in [GRGDRS01], pg 292-293. We
will assume that I is a finite set, and that π has no zero entries. We construct a Markov Chain X0, X1, . . .
with asymptotic distribution π that is easy to sample from. To determine the value of this Markov Chain
at a given time n+ 1, from Xn, we use the Metropolis-Hastings Algorithm:

Theorem 6.3.2 (Metropolis-Hastings Algorithm). We determine the MC using two matrices: A, the accep-
tance matrix, and H, the proposal matrix. The elements Hi,j are chosen such that they are easy to sample
from – for a random variable Y , we let

Hi,j = P(Y = j|Xn = i),

and then

Ai,j = min

{
1,

πjHj,i

πiHi,j

}
.

Then given Xn = i and Y = j, we determine Xn+1 by

Xn+1 =

{
Y with probability Ai,j ,

Xn with probability 1−Ai,j .

Proof. To use this algorithm we prove that the MC has an asymptotic distribution, and that the asymptotic
distribution is our target distribution π.

If the MC moves from a state i to a different state j, it must be sampled from H, probability Hi,j , and then
(independently) accepted, probability Ai,j . This means the TPM P of (Xn) is

Pi,j =


Hi,jAi,j if i ̸= j,

1−
∑

k∈I\{i}

Hi,kAk,i if i = j,

for any i, j ∈ I. Since H is chosen arbitrarily, we may choose the elements of H such that the MC is
irreducible and aperiodic. By Theorem 5.4.7 (since the MC has a finite number of states), the MC has an
asymptotic distribution.

Let i, j ∈ I. If i = j then it is trivial that πiPi,j = πjPj,i holds. If i ̸= j, we have

πiPi,j = πiHi,jAi,j
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= πiHi,j min

{
1,

πjHj,i

πiHi,j

}
= min {πiHi,j , πjHj,i} .

We now have a term symmetric in i and j, so by reversing our previous steps (swapping i and j) we have

πiPi,j = min {πjHj,i, πiHi,j}

= πjHj,i min

{
1,

πiHi,j

πjHj,i

}
= πjHj,iAj,i

= πjPj,i.

Therefore detailed balance holds for any i, j ∈ I, and so by Theorem Theorem 5.2.2 π is an invariant distri-
bution. We know the asymptotic distribution exists, so by Theorem 5.1.7 π is the asymptotic distribution
of the MC.

In practise the Metropolis-Hastings Algorithm is often generalised to continuous (unaccountably infinite)
state spaces – instead of transition probability matrices and distribution vectors we have transition proba-
bility kernels and distribution densities. Many definitions from countable state-space MCs have analogous
definitions to continuous state spaces (see [MT05] from pg 66 onwards) which are not covered in this re-
port.

42



A Appendix

A.1 Stirling’s Approximation

We now provide a proof of Stirling’s Approximation based on [Nor97] pg 58-59, as used in Section 6.1. It is
known that A =

√
2π, but we will not prove this (as it requires a significantly longer proof).

Lemma A.1.1 (Stirling’s Approximation). For any n ∈ N we have that

n! ∼ A
√
n
(n
e

)n
,

where A is some positive constant.

Proof. Let x ∈ (−1, 1). Then note the following Maclaurin series:

log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · ,

log(1− x) = −x− 1

2
x2 − 1

3
x3 − · · · .

This means

1

2
log

(
1 + x

1− x

)
=

1

2
(log(1 + x)− log(1− x))

=
1

2

(
x− 1

2
x2 +

1

3
x3 − · · ·+ x+

1

2
x2 +

1

3
x3 + · · ·

)
=

1

2

(
2x+

2

3
x3 +

2

5
x5 + · · ·

)
= x+

1

3
x3 +

1

5
x5 + · · · . (A.1.1)

Let (An) and (an) be sequences in R, where

An =
n!

nn+1/2e−n

and an = log(An) for all n ∈ N.

Then for any n ∈ N,

an − an+1 = log

(
n!

nn+1/2e−n

)
− log

(
(n+ 1)!

(n+ 1)n+3/2e−(n+1)

)
= log

((
n+ 1

n

)n+1/2
)

− 1

=

(
n+

1

2

)
log

(
n+ 1

n

)
− 1

= (2n+ 1)
1

2
log

(
(2n+ 1) + 1

(2n+ 1)− 1

)
− 1

= (2n+ 1)
1

2
log

(
1 + (2n+ 1)−1

1− (2n+ 1)−1

)
− 1.

This means by (A.1.1), we have

an − an+1 = (2n+ 1)

(
1

2n+ 1
+

1

3(2n+ 1)3
+

1

5(2n+ 1)5
+ · · ·

)
− 1
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=
1

3(2n+ 1)2
+

1

5(2n+ 1)4
+

1

7(2n+ 1)6
+ · · ·

> 0

for any n ∈ N.

Therefore (an) is decreasing and an ≥ 0 for all n ∈ N – an → a as n → ∞ for some a, and so An → A = exp(a)
as n → ∞.

Therefore
n!

Ann+1/2e−n
→ 1

as n → ∞, and so

n! ∼ A
√
n
(n
e

)n
,

as required.
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