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1 Introduction

At present, a majority of Operational Research theory and methodology assumes that

decision makers, as a whole, are rational and make choices in order to pursue an optimal

outcome. In reality, humans still make up a vast majority of the decision makers in

business, institutions and governments. For a long time we have known that humans

are not completely objective - limits in our cognition as well as external factors such as

stress and time, lead consistently to sub-optimal decisions. Additionally, within the same

organisation, management styles are heterogeneous, meaning that the reasoning behind

management decisions vary based upon the personality, cognitive abilities and experience

of the individual in that role (Goldfarb and Yang, 2009). Our cognitive limitations with

regard to large and complex systems can also result in undesirable outcomes. Studies

related to human conceptions of accumulation and over-exploitation of resources have

show that we do not intuitively comprehend nonlinear effects - exponential growth and

decay (Moxnes, 2000).

Therefore, human reasoning has been identified as boundedlly rational - we rea-

son towards an optimal decision, but the rationale behind our choices is bounded by our

cognitive limitations and biases (Bendul and Knollman, 2016). We constantly experi-

ence a deluge of information, which without some kind of sorting procedure would quickly

overwhelm us. So our brain applies simple rules of thumb to pick out data which appears

relevant or agreeable to us. This is called the framing effect, and explains confirmation

biases, where we favour information which suites and justifies an already held belief. In

contrast, a rational agent has no bias toward any particular piece of information, they have

an invariance of preferences. In stressful and busy industries, decisions need a quick turn

around, limits to human cognitive processing lead decision makers to satisfice an objec-

tive rather than spend the time they do not have to develop a more optimal strategy. To

satisfice means that the decision maker seeks to fulfil the minimum possible requirements

to reach a goal. Neglecting these behavioural effects in our models can lead to undesirable

results, or for methodology in industry, the possibility for individuals to discard(Duchessi

and O’Keefe, 1992) or work around the methods entirely(Pollock, 2005).

The field of Behavioural Operations tries to correct for this shortcoming in classic

OR theory and practice, by attempting to study human behaviour and cognition and its

impact on operating systems and processes (Gino and Pisano, 2008). One idea behind it

being that with a greater understanding of human behaviour, we may be able to better
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tailor our methodology to be more suitably applied and effective in human systems.

2 Behavioural Operations

In general Behavioural Operations Research (BehOR) is a broad field with no formeal

integration, although centred around OR much of the theory has been borrowed Be-

havioural Economics, Cognitive Psychology, Game Theory and Systems Dynamics among

others(Martin et al., 2016). There is a large component of Behavioural Operations ded-

icated to empirical research; its importance in this field is self evident, but we will not

cover this in our report. Those who are interested can look at chapter 4 in (Ibanez and

Staats, 2019). For an example of empirical Behavioural Operations research in practice,

one can look here (Goldfarb and Yang, 2009). As for theory, there has been many attempts

to model and understand the behaviour of individual decision makers. Primarily using

methods from Behavioural Economics and Game theory, Prospect Theory is one of the

more well known examples of this. Most behavioural models are structured around the

utility function, which maps a number of choices e.g. money, products etc. to a particular

utility value. The idea being that a decision maker will make a choice or a series of choices

which maximise their utility. The goal then is to build this utility function in a way which

reflects the behaviour of a decision maker. Other variants of this model introduce fairness

(Rabin, 1993), or risk sensitivity (Prospect theory) (Kahneman and Tversky, 1979). Hu-

mans are more sensitive to losses than we are to gains, if a choice means we have a greater

risk of losing something, even if we can gain more from the gamble; we are, on average,

less likely to take that risk.

Systems Dynamics (SD) is another modelling framework which can, and has been ap-

plied to study decision behaviour in real world systems (Oliva and Sterman, 2001)(Mor-

rison, 2015). The framework’s effectiveness stems from its ability to directly incorporate

difficult to model - emergent behaviours, which are features of large complex systems.

Unfortunately, except for a few standard bearers (Sterman, 2009)(Hämäläinen et al.,

2013)(Morrison and Oliva, 2019) there has not been many studies using SD to model

behaviour. This is likely down to a number of reasons for this, which we will discuss

later (see Section 4). In this report we intend to demonstrate the potential and power

SD has in providing more detailed descriptions of human behaviour. How it can be used

with informed judgment to infer the decision rules managers apply in response to different

problems (see Section 3.3). We will begin by first discussing some of the important fea-

tures of complex systems (Section 3). We will then introduce the methodology used in SD

to formally describe systems for use in modelling (Section 3.1 & 3.2). We will then discuss

how data is collected to inform model formulation (Section 3.4). Then we will briefly cover

the methods used to validate these models (Section 3.5). Finally, we will discuss future

research and the limitations of this approach (Section 4).
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3 Modelling Dynamic Systems

Systems are inherently dynamic and nonlinear, they are constantly adjusting and adapting

in response to inputs and stimuli. A business for example, must keep on generating

revenue, if one supplier is cut off or goes bankrupt, the managers within the system will

quickly secure a new one. If they do not, the business collapses and they lose their jobs.

The recourse afforded to these managers is path dependent. Any previous decisions or

events imposed upon the system limit or expand the choices available to the decision

maker (DM). A simple example would be a company which wants to expand into a new

market. The extent of the companies planned developments is dependent on prior market

research, its current profits, recruit availability and the current state of the market itself,

among other things. Path dependence also states that most decisions, once implemented

are irreversible. Meaning, that if one wishes to backpedal on a decision, then the resources,

capacity and time already invested into its realisation cannot be undone. Systems are

also irreducible, so that the individual components of a system cannot be isolated or

removed while still retaining their previous behaviour when part of a whole. If we want

to study the behaviour of a single manager or agent, then we must do so in the context

and conditions in which they normally act. The manufacturing department cannot exist

without a sales department to generate revenue, they both depend on each other and the

greater organisation; they are said to be emergent properties of the company system.

3.1 Formulating System Structure

The complex and dynamic interactions we have just mention inherent to systems mean

that mathematical formulae alone cannot provide a sufficient or intuitive description of

a systems behaviour. We must build another representative language on top of mathe-

matics to help make our models more comprehensible to ourselves. We are also designing

our models for the purpose of understanding the operational problems among real world

systems. Meaning, that within the modeling process we are interacting and working with

multidisciplinary teams of researchers and decision makers, inside and outside of these sys-

tems. Of course, not all of our colleges have technical backgrounds, so this extra language

must be easily transmittable without too much prior expertise.

As such, a visual representation provides a more intuitive description than mathematics

alone. The stock-flow diagrams and causal loop diagrams, seek to capture the more un-

intuitive, complicated parts of a system and represent them in a more digestible format.

In this section using content from ste (2009a) and ste (2009b), we will provide a brief

introduction to these model formulation methods, and explain how they can be used to

show the concept of feedback and the movement of resources throughout the system.

3.1.1 Stock-Flow Diagram

At its most basic level, a system can be seen as the movement, or flow of resources and/or

information. Our circulatory system is a prime example of this principle, the heart pumps

oxygenated blood around the body to keep our organs functioning. It must also pump de-

oxygenated blood back through the lungs for re-oxygenation. The flow rate at which the
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Figure 1: A stock flow diagram of the cardiovascular system. Showing the flow of oxy-

genated blood to and de-oxygenated blood away from the organs. Shown also is the causal

relationship between blood levels and blood flow rate (blood pressure).

heart pumps our blood around the body is our blood pressure. In this visceral example,

the lungs and organs are represented as stocks, which are the labeled rectangles in Figure

1. We have also included a more abstract stock for the total blood within the system.

Stocks can hold/represent any quantity or un-described sub-system. Stocks can also

store information, or other abstract concepts such as customer satisfaction or worker

pressure. In principle stocks represent some quantity the system uses.

The unidirectional pipe connecting the stocks represent the flow ; in our circulatory

system these are the arteries, veins and capillaries. The hourglass shaped symbol on

these flows is called a valve- representing the rate which material flows, this is our blood

pressure. Finally, the cloud like symbols attached to the ‘blood supply‘ are a source (input)

and sink (output). For our purposes, we do not need to include the exact mechanisms

which deal with blood creation and expulsion, so we treat these flows as exogenous. Put

in another way, these sub-systems lie outside of our model’s boundary, so that our model

is considered to be an open-loop system.

3.1.2 Causal Loop Diagram

The very simple model we have just described implicitly assumes a system in equilibrium

i.e. given a constant input, the exact state of the system - its rates of flow and stock

levels will all remain constant. It would be useful to ourselves, and our doctors, to see

what occurs if some external influence disrupts our models harmony, so that it falls into

dis-equilibrium.

For example, smoking and foods high in fats can fill our arteries with plaque, which
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Figure 2: A causal loop diagram showing the relationships between blood pressure and

cardiovascular damage. These form the reinforcement loop R1. Preventative action and

blood pressure are anti correlated and form the balancing loop B1

forces the heart to pump at a faster rate; damaging the linings of our arteries. As a result,

blood and plaque gathers and accumulates at the injury sight. Again the heart must beat

faster, and still damage is incurred, until a complete arterial blockage leads to a heart

attack. The process we have just outlined is an example of a positive feedback loop- a form

of path dependence in which previous events in the system compound, forcing some stock

to increase and accumulate. What we are describing in essence is exponential growth.

As we are not systems thinkers by nature, many inexplicable and undesirable outcomes

from our decisions, turn out to be a direct result of some unaccounted for runaway feedback

loop (Hämäläinen et al., 2013). It is therefore crucial that we include feedback mechanisms

within our model.

So it is here that I introduce our next diagram method: The causal loop diagram. We

start with a basic causal link between two variables and represent one of the variables’

effect on the other with an arrow. The + or − label on the arrow tell us whether our cause

has a correlating relationship (+)- if the cause changes, the effect will also change in the

same direction. If cause increases, so will the effect and vice versa. Or an anti-correlation

(−). If causes increases, effect will decrease and vice versa. These arrows cannot tell us

the exact nature of these relationships; whether they are linear or non-linear, but this

basic form can still provide us with useful insights about the nature of the system. If we

now include a second, opposing arrow, between our two variables we have created a basic

feedback loop. We can see our heart disease example as a causal loop diagram in Figure

2.

Feedback loops come in two distinct forms, these are reinforcing loops and balancing

loops. The right-hand loop, labeled R1 of our heart disease example demonstrates a

reinforcing loops. If our patient begins practicing measures to lower their blood pressure,

we can include the additional left-hand balancing loop, labeled B1. As the patients blood

pressure increases, they respond by adopting healthier habits, thus blood pressure goes

down.

These loops can grow significantly in complexity; often including chains of variables

and multiple interacting loops. Later we will see examples of this kind in a more detailed

scenario. For now we will discuss how to represent these relationships mathematically.
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3.2 Mathematical Representation

The diagrams we have just discussed cloak many unseen nonlinear relationships and in-

teractions; these must be given an appropriate mathematical description to make compu-

tational simulation possible. In most of the literature these formulae are also given simple

labels to give clarity when presenting to non technical audiences (Sterman, 2009)(Morri-

son, 2015). An integral function is denoted by INTEGRAL, for example. As we assume

the reader of this report to have a decent mathematical background, we have chosen to

stick with standard mathematical notation. Except for a few adaptations, most of the

theory presented in this section can be found here (ste, 2009c)

3.2.1 Time Dependent Stock Flow (Accumulation)

Given a stock S with an inflow rate function fI(t) and outflow rate fO(t), then the quantity

of stock at time T is described by its net flow and its initial level St0 :

ST =

∫ T

t0

(fI(t)− fO(t))dt+ St0 (1)

Where t0 = 0 is our initial time. Although mathematically simple, human decision

makers do not automatically apply this reasoning to accumulation problems within real

systems (Hämäläinen et al., 2013). In the departmental store questionnaire, participants

are given a time-series graph of two plots- one line is the varying inflow of customers for a

store and the other is its outflow. The participants are asked a series of questions such as:

‘At what point does the store receive the most customers‘ to harder ones such as ‘At what

time does the store have the largest amount of customers’. Even in the easier question,

which can be answered simply by taking the difference between inflow and outflow or the

derivative, participants, educated professionals among them will get the answer wrong.

They instinctively associate the stock quantity to the flow at a given point, so that if the

inflow is very high, then they assume that the point is when the most customers were

present.

3.2.2 Flow Rates

Flow rates dS
dt into and out of a stock are often related to the size of the stock. We can

represent this relationship using the fractional rate variable α(t):

R(S, t) =
dS

dt
= α(t)S(t) (2)

If α is a constant then, we can describe the above relationship using a linear 1st order

differential equation; in the language of systems dynamics this is a first-order feedback sys-

tem. Simply put, when α is constant S will grow (α > 0) and decay (α < 0) exponentially

with time constant τ = 1
α .

When we begin modelling systems of significant size, we find that flow rate may be

affected by quantities other than stock or time. For example, in a business the rate

at which new employees are recruited can be influenced by a multitude of external and

internal factors. Say the unemployment rate is high, then recruitment rate should increase
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as a result. However, high unemployment may suggest a recession, which will make the

company reluctant to hire new workers as demand will probably be lower. We can continue

listing factors ad nauseam, the fact is we need some way of representing these numerous,

and probably nonlinear effects mathematically; without making our models and notation

overly complicated.

Consider our stock’s flow rate R, to have n independent, correlating variables {Xi}ni=1,

so that R = f(X1, X2, X3, . . . , Xn). We don’t expect these variables to have a homogeneous

relationship with R, nor do we expect them to share identical units with R, or each other.

Thus it becomes necessary to normalise R and each Xi around some reference point we

will denote with (∗). The reference point R∗ might be Rs value at a ‘business as usual‘

state, where the system lies in a partial equilibrium. Likewise, X∗
1 is the value of that effect

when R = R∗, as is the case for all the other independent variables. We can therefore

represent R as a sum or product of all its dependent relationships:

R(X1, X2, X3, . . . , Xn) = R∗ +

n∑
i=1

f(Xi/X
∗
i ) (3)

R(X1, X2, X3, . . . , Xn) = R∗ ·
n∏

i=1

f(Xi/X
∗
i ) (4)

The choice of either product or sum can depended on computational tractability, or

accuracy to the real world system. If food supply was set to 0 for a population model,

then it is not realistic to have population increase regardless. In this case, the product

form would be more appropriate.

3.2.3 Delays

In our models so far, we have assumed that when the causal effects experienced by a

variable change, they do so instantaneously. Of course, in real systems this is certainly

not the case, and the movement of goods and information around an organisation or supply

chain are subject to delays and lead times. To properly capture the behaviour of decision

makers (DM) in real systems, we must include these effects. The bull-whip effect, is a prime

example of this reasoning. In decentralised supply chains, misinterpretations of feedback by

human decision makers leads to massive oscillations in demand, which propagate along the

supply chain. One contributing explanation of the bull-whip effect, identifies a disparity

between the delays inherent in the system and the DMs mental model of how the system

operates (J. Nienhaus and Schoensleben, 2006). As such, a DMs response to delays is a

property which can lead to many undesirable outcomes, which is why its inclusion in our

model is important.

It is common practice to apply adaptive expectations to describe how a DM perceives in-

formation. Imagine the DMs expected knowledge of a quantity at time t to be represented

by the information stock variable Î(t). The real information Ireal(t) is usually a discrete

quantity which is constantly updated, and updates Î(t) with a delay TD. Older knowledge

Ireal(told) will have less weight in decision making in comparison to newer knowledge. We

can therefore define a first-order information smoothing function or exponential smoothing

function to describe this knowledge update process:

7



Î(t) = w(t)Î(told; told < t) + (1− w(t))Ireal(t) (5)

Here the information weighting variable w is a decaying exponential, with delay con-

stant TD

w(t) = exp (−t/TD) (6)

Material delays are another important feature of real decisions, if a manager has made

an order to fulfil present customer demand, and has neglected this delay in their reasoning

then they have made a bad decision.

The simplest form of delay, the pipeline delay defines the output fO(t) as a translation

of the input, if we request an order of 10 units from a supplier and expect a 2 week delay,

TD = 2(weeks) on delivery then we can include this in our model using the function below:

fO(t) = fI(t− TD) (7)

Pipeline delays works well for first in first out (FIFO) processes, but oftentimes, multi-

ple deliveries may come in at different times; be mixed with other deliveries and so on. An

example could be a number of orders requested from a wholesaler at subsequent different

times from each other. Stock available to the wholesaler may be shipped immediately,

even if it was ordered later. We can characterise this as a first-order delay, where the net

material in transit is (fI(t)− fO(t)):

fO(T ) =

∫ T

t0

((fI(t)− fO(t))/TD)dt+ (fI(t0)− fO(t0)) (8)

3.3 Putting it all together: Modelling: Anchor and Adjustment Heuris-

tic

We have now covered the basics of Systems Dynamics models, we will now apply what

we have learned to a common decision heuristic called Anchor and Adjustment. Real

world managers make quick decisions under stress and time pressure. They may be able

to use sophisticated OR techniques to help inform their decisions, but as often happens

unforeseen events can prevent these optimal values from being achieved. Alternatively, a

manager may need to quickly adjust some order, or make an off the cuff prediction for

resource demand. They are not going to ‘pull a figure out of thin air‘, so to say, they

will instead anchor their reasoning on some concrete value e.g. average demand, previous

orders etc. and increase or decrease that value in response to system feedback.

We can describe this regulatory feedback loop as a Hill Climbing Search- a local opti-

misation heuristic, where a decision maker starts with an initial value and incrementally

increases it until some objective function has been maximised. For a convex problem this

will lead to a global optima - the best solution to the DMs problem. Our real world prob-

lems are not likely to be convex, so this method cannot guarantee an optimal solution.

However, this fact makes Hill Climbing Search an appropriate model as a human decision

rule. In fact (Oliva and Sterman, 2001) used Hill Climbing Search in their SD model

investigating service quality erosion for a UK based bank. In response to work backlogs,
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Figure 3: A systems dynamics diagram showing the anchor and adjustment decision rule.

This model incorporates information delays, manager action and goal revision. The system

adjustment balance loop is denoted B, and the goal revision reinforcement loop is denoted

R. Adapted from (ste, 2009c)

bank employees would reduce the time they spent on each case, by going off the previous

standard T and decreasing downward in response to work pressure from management.

Let us imagine our manager has anchored on some goal or desired system state S∗;

they implement policy to bring the system towards this new state, by trying to reduce the

error ∆S = S∗ −S, where S is the current state of the system. We can see this portrayed

in the first-order feedback decision loop in Figure 3. The mathematical form of this loop

is below, where T̂G is the expected goal adjustment time:

S =

∫ T

t0

(S∗ − S)/T̂Gdt+ St0 (9)

As the manager converges on S∗, new information about the system after their actions

have taken effect may cause them to revise their goals. This may be that S∗ was unrealistic,

or insufficient in achieving a desirable outcome. There are many factors which can lead to

S∗’s adjustment; we can use Equation 3 or 4 to formally represent these effects {Xi}ni=1.

We also know from the standard formulation that S∗’s adjustment will depend on the

systems current state S:

S∗ = S

[
n∏

i=1

f(Xi/X
∗
i )

]
(10)

To approach a closer depiction of reality, we can also include a first-order information

smooth on the output of S and the other effect variables. In addition, when our manager

actions their policy there will be delays in its effect. For example, production capacities
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may need to increase to meet this target, this will require the order of new machines and

staff which will be handled by other departments. If our model boundary encompasses

only this management process then we need to include delays for exogenous inputs. The

reassignment of staff may only require a pipe-line delay characterisation, where as the

requisition of new machinery need a first or higher order delay. For now, to keep our

formulation simple we will maintain our current structure.

To simplify even further, let us now assume that the cumulative effect of the effect

variables can be concentrated within the constant k. So that the relationship between the

managers goal and the systems current state takes this form:

S∗ = Sk (11)

With this updated relationship we can rewrite our first-order feedback decision loop:

S =

∫ T

t0

(k − 1)S/T̂Gdt+ St0 (12)

If we vary k we can see how the manager’s anchor and adjustment decision rule reacts.

If k > 1, the goal revision loop R dominates as the manager constantly re-assesses the

capacity for the system to grow. If k < 1, then the manager is facing significant resistance

to their initial goal, they then reduce their expectations and define a lower standard for

their desired state of the system. The system will reach a new equilibrium once S and S∗

converge to a single value.

3.4 Research, Field-Work & Data

We cannot create our model within a vacuum, theory is a good starting point but to build

an accurate and useful model we must find out about the system itself; we must understand

how the different subsystems and agents interact, for this we need good data. As we are

dealing with human systems, the ideal data sources would be what Jay W Forrester calls

the mental data base (Forrester, 1980) - The way human decision makers respond to their

own observations on the system, their expectations and prior experiences with the systems

behaviour and the Decision Rules they apply. Forrester, was one of the early pioneers of

Systems Dynamics; he argued the importance of qualitative data, in addition to numerical

statistics and measurements. As we cannot peer directly into peoples minds, we must

build our understanding of mental data bases (Forrester, 1980) using Ethnography- The

study of the culture and behaviours of a particular group. Although, Ethnography is

usually confined to Anthropology, much of the research techniques they use i.e. written

records, interviews etc. can be applied to building SD models in Behavioural Operational

Research. Numerical data alone is not sufficient to describe the actual causal mechanisms

behind decision behaviours; statistical and inductive inferences may be collated, but can be

heavily biased if the source of these judgments is from the modeller themselves. Someone

who is an outside party.

A good demonstration of field research can be found in (Morrison, 2015), in which

Morrison began collecting data for his model over a period of 20 months. He started

his observations just as an engine manufacturing company began implementing a new
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‘lean manufacturing policy‘ to reduce inefficiencies in the manufacturing process and help

reduce work loads. His data consisted of numerous interviews with managers, employees

and union officials at different points as the new policy was taking effect. He made

sure to collect audio recordings of his interviews for future reference, as well as company

documents and emails. During the data collection process he also frequently illustrated

what he learnt with causal loop diagrams, to help him understand the various processes

taking place within the company. Iterating between data collection, diagram creation and

the creation of formal mathematical models allowed him to identify useful patterns, test

them and update his conclusions. In a sense, this field work was not an isolated part of

his study but part of the model creation process itself.

3.5 Model Validation

Model validation is extremely difficult, our model is usually a bespoke but imperfect

replication of one particular system, so we cannot perform repeat tests and quantify its

truth with a convenient statistical parameter. In ste (2009d), Sterman argues that we

can never validate or verify whether a model truly represents the system under study. He

suggests that such a test would be impossible, after all ‘the map is not the territory‘ as

quoted by Alfred Korzybski(Korzybski, 2005). Instead, Sterman says that we should assess

the models usefulness; that is the model’s ability to provide answers and explanations to

the questions we are asking. He has conveniently collated many useful methods to test a

models usefulness. This list is extensive, so I will only briefly cover and explain some of

them in this section. For a more thorough dive into this topic, along with useful cases and

explanations one can explore chapter 21 of Business Dynamics by John D. Sterman(ste,

2009d).

One more important point, validation is not the only important factor when conducting

Systems Dynamics studies, one must also make their research accessible and clear enough

so that others may asses and use it. To help us achieve this goal, we can take advice

from the application of the 5Rs in software engineering (Benureau and Rougier, 2018)-

Rerunnability, Repeatability, Reproducibility, Reusability and Replicability.

One notable and crucial practice is documentation. You must include the reasoning behind

your models formulation, the equations you used to model relationships, your units and

all the justifications which go along with these components. Describe your variables using

plain English, instead of Rd, use Rate of Increasing Demand. It is also important to label

your diagrams structures and loops, preferably within the diagrams themselves.

3.5.1 Structural Assessment

Some of the simplest sources of error within our models arise from behaviour which fails to

conform to physical reality. If we have an inventory stock variable that has gone to 0, then

no matter how many orders have been placed, they cannot be fulfilled. Unfortunately,

we cannot manifest stock from the aether to make up for shortfalls. This is may seem

trivially simple, but that very triviality makes such errors easy to overlook. In such cases

a simple control measure should be implemented within the model to shut of a stock’s
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outflow once it reaches 0.

Failure to account for irreversible processes is another simple error which can lead to

amusing results. Sterman (ste, 2009d) provides a real case of a model for the leather

market, which, when demand was low, would convert unsold product back into cows!

Structural assessments to ensure logical and physical consistency should be performed

repeatedly throughout the models construction and finalisation. They should be informed

on the modeller’s judgment, as well as the valuable data collected from the system itself.

Dimensional consistency is another very important factor, it is useful to check if the

variables within your model actually have real life counterparts; that there is no variable

with inexplicable units such as (work pressure/week2/month3).

The use of structural assessments are obviously important in ensuring model coherency,

but as well as this, the act of performing the assessment helps the model develop a firmer

grip on their understanding of the system.

3.5.2 Quantifiable Assessments

The equations within a model will all contain parameters which will need to be determined

and tested from the system’s real data. Depending on the nature of a variable, finding

time-series data for system ranges from easy to almost impossible. Quantities which

the business/organisation/system records for their own purposes may not be accessible;

depending on the researchers relationship with that system, i.e. if they are conducting

an independent study or have been commissioned by the organisation itself. Other ‘soft‘

variables like work pressure, customer satisfaction are more difficult to obtain, and may

require extra work on the researchers part. We can borrow from the social sciences by

using questionnaires and surveys to gauge these quantities, but as there is no ‘objective‘

measure, a combined use of modeller’s judgment and statistical analysis may be required.

With limited available data Bootstrapping methods can be used to fill gaps in the data,

but care should be exercised to ensure the new data maintains the appropriate temporal

behaviour.

Appropriate statistical methods should take into account the collinearity, autocorrela-

tion and heteroscedasticity of the data, when estimating parameters and their confidence

intervals. So Ordinary Lease Squares (OLS) regression methods, should only be applied

if these effects are shown to have little statistical significance (ste, 2009d). Chapter 1 of

Analytical Methods for Dynamic Modelers (rah, 2015) describes applications of paramet-

ric and non-parametric Maximum Likelihood Estimation (MLE) methods for determining

parameter values and their confidence intervals for dynamic models. They also describe

Bootstrapping methods which can be used for parameter estimation if asymptotic assump-

tions for the MLE are shown to breakdown or produce inconsistent results. They suggest

that Bootstrapping is more computationally demanding some elements of its application

are left to the modellers judgment. See (Oliva and Sterman, 2001) a real example of

thorough data analysis and parameter estimation.

On that point, despite the subjective nature of that statement, a modellers judgment

should not be neglected, and sometimes it is even necessary to close in on parameter values

if statistical estimation is unreliable. So long as this judgment is not absurd, an unverifiable
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parameter bound in strong reasoning is better than no parameter at all. However, this

attitude should not be applied lackadaisically to parameter estimation, and if it is done,

it should be stated within the documentation along with justification.

3.5.3 Sensitivity Analysis

Generally, sensitivity analysis tests assess the systems behavioural response when param-

eters are adjusted within particular ranges. The purpose of this process is to test the

robustness of ones’ conclusions about the models behaviour; to see if they are still valid

in response to adjustments in how the system operates. Additionally, it also serves to

check the suitability of the confidence regions for the estimated parameters, or parameters

that have been set by judgment alone. For Sensitivity Analysis in behavioural systems,

Sterman encourages us to put less emphasis on numerical sensitivity (parameter response)

and more on Policy Sensitivity and Behaviour-Mode Sensitivity. This is because small ad-

justments in the parameters that dictate a companies profit margins or demand will not

produce as profound behavioural effects as a change from a increasing rate of profit to a

decreasing rate of profit. That said, for certain parameters numerical sensitivity can still

lead to (un)desirable runaway effects, this is, after all the nature of complex chaotic sys-

tems. However, the large amount of parameters within these models, not to mention their

correlating effects means that an extensive and thorough parameter sensitivity analysis is

not realistic. Modellers should again use their own judgment to define what parameters

they think are behind the largest underlying causes, and work form there.

Behaviour-Mode Sensitivity is the sensitivity of a model in response to particular be-

havioural scenarios imposed upon it. These can range from altering fractional coefficients

to change a decaying relationship into one of exponential growth, to forms of Extreme

Condition Tests. For example, we could set certain stocks to their maximum values and

assess the stability of the simulation’s response. These calibration methods are good at

determining the limits of the model but it is also good to design realistic Behavioural-

Modes around real scenarios the system could face. These realistic scenarios should be

appropriately labeled and they should be designed based upon the data already collected.

The up-shot of creating these scenarios is two fold, firstly it can be used in Policy Sensi-

tivity Analysis, and secondly for support in Systems Improvement Tests. See (ste, 2009d)

for more details on this.

4 Discussion & Further Research

Despite the apparent merits of Systems Dynamics (SD) demonstrated within this report,

the limited amount of studies and research in which SD has been applied to operational

research is an obvious mark against its credibility.

We have identified two of SDs biggest limitations, its subjective components and the

time burden required to perform SD methodology correctly. As we discussed in Section

3.5, there is no way to provide a clear cut and concrete answer on whether we can trust

a model or not. The subjectivity inherent in the modelling and validation process can

make outside observers feel un-easy about the apparent lack of scientific rigour in Systems

13



Dynamics modelling. Of course these feelings are valid, the sciences in general, both ‘hard‘

and ‘soft‘ are undergoing a replication crisis (Hudson, 2021). Some of these subjective fea-

tures are unavoidable, but an actual formalisation of SD methodology within Behavioural

Operations such could to improve its credibility. As a textbook Sterman’s Business Dy-

namics does this very well, and with the resurgence in Behavioural Operational Research,

other attempts are being made to formalise the field(Hämäläinen et al., 2013)(Morrison

and Oliva, 2019)(Martin et al., 2016). Examples of rigorous statistical analysis within SD

can also help with this.

The other biggest hurdle for SD in BehOR is time and data. The massive work burden

required to conduct a high quality study and obtain enough data to validate the results

is a big limiting factor in allowing for more wide spread adoption. This fact cannot really

be avoided and time will tell if future developments in this field will lead to ways of

expediting the process. AI and data automation tools do have potential, but we have not

seen attempts to use them in this field.
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