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An Example of Changepoint Detection

Figure 1: Terrorist Attack Counts in North America [5]
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Changepoint Detection Algorithm [6]
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Changepoint Detection Algorithm [6]
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Outline

Search Methods tradeoff
Exact methods: more thorough but time-consuming
Approximate methods: fast but crude

Game Plan
1 Exact Search via Pruning (PELT, FPOP)
2 Approximate Search via Binary Segmentation (BS, WBS, SBS)
3 Numerical Comparison
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Optimal Partitioning

Consider all possible changepoint number k and respective location
τ , minimise the total cost (+ penalty)

F (t) = min
k,τ

m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
− β

A simpler version:

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

A LOT OF iterations !!!
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Pruning

A lot of iterations, and some are more important than others.

Idea: Prune out the bad timestamps.

Solutions: PELT, FPOP, ...
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PELT [1]

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
=: min

τ
V (τ)

If we have V (a) > V (b) for a < b, then we can prune out a at
time t.

Not very useful (yet).

Condition 1: Added changepoint always decreases cost by a
constant K ≥ 0.

After some math ... if F (s) + C(y(s+1):t) + K ≥ F (t), then we can
ignore s for consideration at any future time T ≥ t.
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PELT [1]

F (t) = min
τ∈R(t)

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

where R(t) ⊂ [1 : t] is the pruned time set at time t according to
F (s) + C(y(s+1):t) + K ≥ F (t).
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FPOP [3]

Condition 2: Cost can be written down as a decomposable
minimisation problem, i.e.

C(y(s+1):t) = min
µ

t∑
i=s+1

γ(yi , µ).

Stronger than Condition 1.

With this condition, we can rewrite the overall cost as a double
minimisation problem (over τ and µ).

F (t) = min
τ

min
µ

Costτt (µ) = min
µ

min
τ

Costτt (µ) = min
µ

Cost∗t (µ)
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FPOP [3]

1 Cost∗t (µ) consists of components from a few τ

2 Each component is used in the overall cost at some values of µ
3 Updating the cost only involves checking these limited sets
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FPOP [3]
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PELT v.s. FPOP

1 Condition needed for PELT is weaker than FPOP
2 FPOP requires more memory than PELT (deteriorates

increasingly for higher dimensions)
3 FPOP prunes all the points pruned by PELT, and (much) more
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Types of Binary Segmentation

All method use AMOC, but vary the method of breaking down the
data into smaller intervals

• Standard
• Wild
• Seeded
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Standard Binary Segmentation [4]
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Wild Binary Segmentation [2]

Random interval selection:
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Seeded Binary Segmentation [2]
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Seeded Binary Segmentation Method

Algorithm 1 Seeded Binary Segmentation

Require: Data X with length T , decay parameter a ∈ (1
2 , 1], mini-

mal segment length m ≥ 2, and a selection method.
1: Create a collection of seeded intervals I with a decay a, which

cover m ≥ 2 observations.
2: for i in (1,|I|) do
3: Take the ith interval in I and denote the boundaries l and

r .
4: Calculate the CUSUM statistic T(l ,r ](s)fors = l+1, . . . , r−1.
5: Apply the chosen selection method to T(l ,r ](·), (l , r) ∈ I,to

output the final changepoint estimates.
6: end for
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Seeded Selection Methods

• Greedy selection
• Narrowest-over-threshold
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Greedy Selection

• Ranks the intervals according to their gains G(l ,r ]

• Takes the first ŝ of the interval with the highest gains
• Removes from I all other intervals that contain ŝ

• repeats these two steps, picking the next best ŝ
• Stops when no more intervals remain with a gain G over the

chosen threshold.
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Narrowest-over-threshold

• Takes all intervals (l , r ] ∈ I where the gains are above the
threshold

• The narrowest interval containing the ŝ are chosen, and all
others are removed from I

• This is repeated until no remaining intervals contain a gain
over the threshold

The typical thresholds used for univariate Gaussian models as
C log

1
2 T .
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Interval Selection
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Why we chose seeded

Benefits:
• Faster - near linear run times
• Reproducibility
• Asymptotically minimax optimal
• More flexible and easier to implement than dynamic

programming
• More smaller intervals and fewer longer intervals than the

random method
• The speed is comparable to FPOP
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Experiment Setup

• Data is generated randomly 50 times but we set a seed.
• The gap between changepoints is 30.
• Accuracy measures
• Computational time
• The mean of these are taken over 50 iterations
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Accuracy Measures

Three measures:
• Annotation error: |K̂ − K ∗|
• Hausdorff Distance:

max(max
t̂∈T̂

min
t∗∈T ∗

|t̂ − t∗|, max
t∗∈T ∗

min
t̂∈T̂

|t̂ − t∗|)

• Rand Index: Amount of agreement between two
segmentations. Set of grouped indices and set of non-grouped
indices. A pair of indexes is grouped if they are in the same
segment according to both segmentations.

RANDINDEX
(
T ∗, T̂

)
:=

∣∣∣gr(T̂ ) ∩ gr (T ∗)
∣∣∣+ ∣∣∣ngr(T̂ ) ∩ ngr (T ∗)

∣∣∣
T (T − 1)
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Experiment 1

• We change the length of the data

N : 103, 104, 5x104, 105

• We fix the number of change points to be N
100 . This is so we

have a we consider a linearly increasing number of
changepoints.
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Experiment 1
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Experiment 2

• We fix the length of the data to N = 105.
• We vary the number of change points by the following

N

50
,
N

100
,
N

250
,
N

500
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Experiment 2
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Conclusion

• Overall, both experiments we find that FPOP seems to
perform the best in all metrics and SBS is also pretty good.

• Metric choice should be taken with careful consideration;
metrics perform poorly or accurately based on the nature of
the data.

• Adjusted Rand index which corrects for chance.
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Strengths and Weakness

• The strengths of BS is its computational time to find the
change points

• The weakness of BS it doesn’t find the changepoints very well
• The weakness of FPOP is that its cost function can only take

one parameter, hence less versatile.
• The strengths of SBS is that it is very versatile and more

accurate then the exact method PELT which should be more
thorough in how it finds its changepoints. It also gives a higher
level of reproducibility.

• SBS is not as accurate as FPOP
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Further Research

• More comparisons for example to WBS, sliding window (in
particular for online ) and other methods.

• Consider using the F1 Score
• Consider the penalty terms in more detail, for example, SIC for

PELT and FPOP. The penalty constant increases with the
amount of data. Overfitting the data may yield too many
changepoints.

• Varying the noise-to-signal ratio, magnitude (vary the range of
the means) a gap between changepoints.
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