
Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Changepoint Detection

Lauren Durrell, Kajal Dodhia, Harry Newton, Rui Zhang

STOR-i, Lancaster University

Changepoint Detection 1 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

An Example of Changepoint Detection

Figure 1: Terrorist Attack Counts in North America [5]

Changepoint Detection 2 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Changepoint Detection Algorithm [6]

Changepoint Detection 3 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Changepoint Detection Algorithm [6]

Changepoint Detection 4 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Outline

Search Methods tradeoff
Exact methods: more thorough but time-consuming
Approximate methods: fast but crude

Game Plan
1 Exact Search via Pruning (PELT, FPOP)
2 Approximate Search via Binary Segmentation (BS, WBS, SBS)
3 Numerical Comparison

Changepoint Detection 5 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Outline

Search Methods tradeoff
Exact methods: more thorough but time-consuming
Approximate methods: fast but crude

Game Plan
1 Exact Search via Pruning (PELT, FPOP)
2 Approximate Search via Binary Segmentation (BS, WBS, SBS)
3 Numerical Comparison

Changepoint Detection 5 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Optimal Partitioning

Consider all possible changepoint number k and respective location
τ , minimise the total cost (+ penalty)

F (t) = min
k,τ

m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
− β

A simpler version:

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

A LOT OF iterations !!!

Changepoint Detection 6 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Optimal Partitioning

Consider all possible changepoint number k and respective location
τ , minimise the total cost (+ penalty)

F (t) = min
k,τ

m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
− β

A simpler version:

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

A LOT OF iterations !!!

Changepoint Detection 6 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Optimal Partitioning

Consider all possible changepoint number k and respective location
τ , minimise the total cost (+ penalty)

F (t) = min
k,τ

m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
− β

A simpler version:

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

A LOT OF iterations !!!
Changepoint Detection 6 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Pruning

A lot of iterations, and some are more important than others.

Idea: Prune out the bad timestamps.

Solutions: PELT, FPOP, ...

Changepoint Detection 7 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Pruning

A lot of iterations, and some are more important than others.

Idea: Prune out the bad timestamps.

Solutions: PELT, FPOP, ...

Changepoint Detection 7 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Pruning

A lot of iterations, and some are more important than others.

Idea: Prune out the bad timestamps.

Solutions: PELT, FPOP, ...

Changepoint Detection 7 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
=: min

τ
V (τ)

If we have V (a) > V (b) for a < b, then we can prune out a at
time t.

Not very useful (yet).

Condition 1: Added changepoint always decreases cost by a
constant K ≥ 0.

After some math ... if F (s) + C(y(s+1):t) + K ≥ F (t), then we can
ignore s for consideration at any future time T ≥ t.

Changepoint Detection 8 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
=: min

τ
V (τ)

If we have V (a) > V (b) for a < b, then we can prune out a at
time t.

Not very useful (yet).

Condition 1: Added changepoint always decreases cost by a
constant K ≥ 0.

After some math ... if F (s) + C(y(s+1):t) + K ≥ F (t), then we can
ignore s for consideration at any future time T ≥ t.

Changepoint Detection 8 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
=: min

τ
V (τ)

If we have V (a) > V (b) for a < b, then we can prune out a at
time t.

Not very useful (yet).

Condition 1: Added changepoint always decreases cost by a
constant K ≥ 0.

After some math ... if F (s) + C(y(s+1):t) + K ≥ F (t), then we can
ignore s for consideration at any future time T ≥ t.

Changepoint Detection 8 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
=: min

τ
V (τ)

If we have V (a) > V (b) for a < b, then we can prune out a at
time t.

Not very useful (yet).

Condition 1: Added changepoint always decreases cost by a
constant K ≥ 0.

After some math ... if F (s) + C(y(s+1):t) + K ≥ F (t), then we can
ignore s for consideration at any future time T ≥ t.

Changepoint Detection 8 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
=: min

τ
V (τ)

If we have V (a) > V (b) for a < b, then we can prune out a at
time t.

Not very useful (yet).

Condition 1: Added changepoint always decreases cost by a
constant K ≥ 0.

After some math ... if F (s) + C(y(s+1):t) + K ≥ F (t), then we can
ignore s for consideration at any future time T ≥ t.

Changepoint Detection 8 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ∈R(t)

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

where R(t) ⊂ [1 : t] is the pruned time set at time t according to
F (s) + C(y(s+1):t) + K ≥ F (t).

Changepoint Detection 9 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT [1]

F (t) = min
τ∈R(t)

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
τ∗ = argmin

τ

[
F (τ) + C

(
y(τ+1):t

)
+ β

]
cp(t) = (cp(τ∗), τ∗)

where R(t) ⊂ [1 : t] is the pruned time set at time t according to
F (s) + C(y(s+1):t) + K ≥ F (t).

Changepoint Detection 9 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

FPOP [3]

Condition 2: Cost can be written down as a decomposable
minimisation problem, i.e.

C(y(s+1):t) = min
µ

t∑
i=s+1

γ(yi , µ).

Stronger than Condition 1.

With this condition, we can rewrite the overall cost as a double
minimisation problem (over τ and µ).

F (t) = min
τ

min
µ

Costτt (µ) = min
µ

min
τ

Costτt (µ) = min
µ

Cost∗t (µ)

Changepoint Detection 10 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

FPOP [3]

Condition 2: Cost can be written down as a decomposable
minimisation problem, i.e.

C(y(s+1):t) = min
µ

t∑
i=s+1

γ(yi , µ).

Stronger than Condition 1.

With this condition, we can rewrite the overall cost as a double
minimisation problem (over τ and µ).

F (t) = min
τ

min
µ

Costτt (µ) = min
µ

min
τ

Costτt (µ) = min
µ

Cost∗t (µ)

Changepoint Detection 10 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

FPOP [3]

Condition 2: Cost can be written down as a decomposable
minimisation problem, i.e.

C(y(s+1):t) = min
µ

t∑
i=s+1

γ(yi , µ).

Stronger than Condition 1.

With this condition, we can rewrite the overall cost as a double
minimisation problem (over τ and µ).

F (t) = min
τ

min
µ

Costτt (µ) = min
µ

min
τ

Costτt (µ) = min
µ

Cost∗t (µ)

Changepoint Detection 10 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

FPOP [3]

Condition 2: Cost can be written down as a decomposable
minimisation problem, i.e.

C(y(s+1):t) = min
µ

t∑
i=s+1

γ(yi , µ).

Stronger than Condition 1.

With this condition, we can rewrite the overall cost as a double
minimisation problem (over τ and µ).

F (t) = min
τ

min
µ

Costτt (µ) = min
µ

min
τ

Costτt (µ) = min
µ

Cost∗t (µ)

Changepoint Detection 10 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

FPOP [3]

1 Cost∗t (µ) consists of components from a few τ

2 Each component is used in the overall cost at some values of µ
3 Updating the cost only involves checking these limited sets

Changepoint Detection 11 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

FPOP [3]

Changepoint Detection 12 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

PELT v.s. FPOP

1 Condition needed for PELT is weaker than FPOP
2 FPOP requires more memory than PELT (deteriorates

increasingly for higher dimensions)
3 FPOP prunes all the points pruned by PELT, and (much) more

Changepoint Detection 13 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Types of Binary Segmentation

All method use AMOC, but vary the method of breaking down the
data into smaller intervals

• Standard
• Wild
• Seeded

Changepoint Detection 14 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Standard Binary Segmentation [4]

Changepoint Detection 15 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Wild Binary Segmentation [2]

Random interval selection:

Changepoint Detection 16 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Seeded Binary Segmentation [2]

Changepoint Detection 17 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Seeded Binary Segmentation Method

Algorithm 1 Seeded Binary Segmentation

Require: Data X with length T , decay parameter a ∈ (1
2 , 1], mini-

mal segment length m ≥ 2, and a selection method.
1: Create a collection of seeded intervals I with a decay a, which

cover m ≥ 2 observations.
2: for i in (1,|I|) do
3: Take the ith interval in I and denote the boundaries l and

r .
4: Calculate the CUSUM statistic T(l ,r](s)fors = l+1, . . . , r−1.
5: Apply the chosen selection method to T(l ,r](·), (l , r) ∈ I,to

output the final changepoint estimates.
6: end for

Changepoint Detection 18 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Seeded Selection Methods

• Greedy selection
• Narrowest-over-threshold

Changepoint Detection 19 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Greedy Selection

• Ranks the intervals according to their gains G(l ,r]

• Takes the first ŝ of the interval with the highest gains
• Removes from I all other intervals that contain ŝ

• repeats these two steps, picking the next best ŝ
• Stops when no more intervals remain with a gain G over the

chosen threshold.

Changepoint Detection 20 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Narrowest-over-threshold

• Takes all intervals (l , r] ∈ I where the gains are above the
threshold

• The narrowest interval containing the ŝ are chosen, and all
others are removed from I

• This is repeated until no remaining intervals contain a gain
over the threshold

The typical thresholds used for univariate Gaussian models as
C log

1
2 T .

Changepoint Detection 21 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Interval Selection

Changepoint Detection 22 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Why we chose seeded

Benefits:
• Faster - near linear run times
• Reproducibility
• Asymptotically minimax optimal
• More flexible and easier to implement than dynamic

programming
• More smaller intervals and fewer longer intervals than the

random method
• The speed is comparable to FPOP

Changepoint Detection 23 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Experiment Setup

• Data is generated randomly 50 times but we set a seed.
• The gap between changepoints is 30.
• Accuracy measures
• Computational time
• The mean of these are taken over 50 iterations

Changepoint Detection 24 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Accuracy Measures

Three measures:
• Annotation error: |K̂ − K ∗|
• Hausdorff Distance:

max(max
t̂∈T̂

min
t∗∈T ∗

|t̂ − t∗|, max
t∗∈T ∗

min
t̂∈T̂

|t̂ − t∗|)

• Rand Index: Amount of agreement between two
segmentations. Set of grouped indices and set of non-grouped
indices. A pair of indexes is grouped if they are in the same
segment according to both segmentations.

RANDINDEX
(
T ∗, T̂

)
:=

∣∣∣gr(T̂) ∩ gr (T ∗)
∣∣∣+ ∣∣∣ngr(T̂) ∩ ngr (T ∗)

∣∣∣
T (T − 1)

Changepoint Detection 25 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Experiment 1

• We change the length of the data

N : 103, 104, 5x104, 105

• We fix the number of change points to be N
100 . This is so we

have a we consider a linearly increasing number of
changepoints.

Changepoint Detection 26 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Experiment 1

Changepoint Detection 27 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Experiment 2

• We fix the length of the data to N = 105.
• We vary the number of change points by the following

N

50
,
N

100
,
N

250
,
N

500

Changepoint Detection 28 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Experiment 2

Changepoint Detection 29 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Conclusion

• Overall, both experiments we find that FPOP seems to
perform the best in all metrics and SBS is also pretty good.

• Metric choice should be taken with careful consideration;
metrics perform poorly or accurately based on the nature of
the data.

• Adjusted Rand index which corrects for chance.

Changepoint Detection 30 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Strengths and Weakness

• The strengths of BS is its computational time to find the
change points

• The weakness of BS it doesn’t find the changepoints very well
• The weakness of FPOP is that its cost function can only take

one parameter, hence less versatile.
• The strengths of SBS is that it is very versatile and more

accurate then the exact method PELT which should be more
thorough in how it finds its changepoints. It also gives a higher
level of reproducibility.

• SBS is not as accurate as FPOP

Changepoint Detection 31 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Further Research

• More comparisons for example to WBS, sliding window (in
particular for online) and other methods.

• Consider using the F1 Score
• Consider the penalty terms in more detail, for example, SIC for

PELT and FPOP. The penalty constant increases with the
amount of data. Overfitting the data may yield too many
changepoints.

• Varying the noise-to-signal ratio, magnitude (vary the range of
the means) a gap between changepoints.

Changepoint Detection 32 / 33

Introduction Exact Search via Pruning Approximate Search via BS Results Conclusion

Reference

[1] R. Killick, P. Fearnhead, and I. A. Eckley.
Optimal detection of changepoints with a linear computational cost.
Journal of the American Statistical Association, 107(500):1590–1598, October 2012.
URL: http://dx.doi.org/10.1080/01621459.2012.737745,
doi:10.1080/01621459.2012.737745.

[2] Solt Kovács, P Bühlmann, H Li, and Axel Munk.
Seeded binary segmentation: a general methodology for fast and optimal changepoint
detection.
Biometrika, 110(1):249–256, 2023.

[3] Robert Maidstone, Toby Hocking, Guillem Rigaill, and Paul Fearnhead.
On optimal multiple changepoint algorithms for large data, 2014.
arXiv:1409.1842.

[4] Charles N/a.
Binary segmentation (binseg).
URL: https:
//centre-borelli.github.io/ruptures-docs/user-guide/detection/binseg/.

[5] S. O. Tickle, I. A. Eckley, and P. Fearnhead.
A computationally efficient, high-dimensional multiple changepoint procedure with
application to global terrorism incidence.
Journal of the Royal Statistical Society: Series A Statistics in Society, 184(4):1303–1325,
October 2021.
doi:10.1111/rssa.12695.

[6] Charles Truong, Laurent Oudre, and Nicolas Vayatis.
Selective review of offline change point detection methods.
Signal Processing, 167:107299, 2020.

Changepoint Detection 33 / 33

http://dx.doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2012.737745
https://arxiv.org/abs/1409.1842
https://centre-borelli.github.io/ruptures-docs/user-guide/detection/binseg/
https://centre-borelli.github.io/ruptures-docs/user-guide/detection/binseg/
https://doi.org/10.1111/rssa.12695

	Introduction
	Exact Search via Pruning
	Approximate Search via BS
	Results
	Conclusion

