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MCMC algorithms

• Random Walk Metropolis (RWM)
• Metropolis-adjusted Langevin algorithm (MALA)
• Hamiltonian Monte Carlo
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RWM

• Given a target density π(x), the RWM uses the following
proposal density:

q(x ′ | x) = x + N(0, σ).

• MALA uses the following proposal density:

q(x ′ | x) = x +
σ

2
∇ log π(x) + N(0, σ).
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Illustration

Figure 1: The densities of the two proposal distributions given the current
value of the chain is 2. Target distribution is a standard Normal and
σ = 0.5 for both proposals.
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HMC

• Uses Hamiltonian dynamics.

• (x ,ρ):
• x are the parameters of interest.
• ρ are momentum variables.
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Illustration

Figure 2: A simulation of the movement particle along the posterior
surface [3].
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Algorithm

• Joint density

π(x ,ρ) = π(ρ | x)π(x).

• Define

H(x ,ρ) = − log π(x ,ρ)
= − log π(ρ | x)− log π(x)
= Kinetic energy + potential energy.
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Algorithm

• Need to solve the following differential equations:

dx
dt

= −∇ log π(ρ)

dρ

dt
= ∇ log π(x)

• Leapfrog integrator: need a step size ϵ and number of steps L.
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MH step

• Given a current position xn and momentum ρn;

• Simulate ρ from N(0, I).
• Repeat the following L times (Leapfrog integrator):

• ρ← ρ+ ϵ
2∇ log(π(x))

• x ← x + ϵρ
• ρ← ρ+ ϵ

2∇ log(π(x))
• Accept (x ′,ρ′) with probability

min(1, exp(H(xn,ρn)− H(x ′,ρ′)))

• L = 1 gives MALA algorithm
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Choosing L and ϵ

• Can be difficult to choose L and ϵ which facilitate efficiency.
• Poor choices can compromise ergodicity.
• One solution: use NUTS algorithm.
• Another solution: Use AAPS algorithm.
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Tuning

From earlier:
• RWM uses the following proposal density:

q(x ′ | x) = x + N(0, σ).

• MALA uses the following proposal density:

q(x ′ | x) = x +
σ

2
∇ log π(x) + N(0, σ).

We must find the value of σ that provides each target distribution
with the optimal acceptance rate (α).

α =
number of times we update the state

total number of iterations
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Optimal Scaling

Parameter Scaling Optimal Accept. Rate
RWM ∝ d−1 0.234
MALA ∝ d−1/3 0.574
HMC ∝ d−1/4 0.651

Table 1: Optimal Scaling Results
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Target Distributions

Figure 3: Graph of the densities of all chosen target distributions
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Target Distribution 1

• Normal(0,1) distribution

• f (x , y) = −1
2(x

2 + y2)

• Number of dimensions: d = 2

• Optimal acceptance rates:
• RWM: α = 0.35
• MALA: α = 0.574
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Target Distribution 1 Graphs

Figure 4: Graphs showing the effect sigma has on the acceptance rate of
the Normal(0,1) target distribution
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Target Distribution 2

• Product of t-distributions with 1 degree of freedom (ν = 1)

• f (x) =
∏d

i=1

(
1

π(1+x2
i )

)
• Number of dimensions: d

• Optimal acceptance rates (d = 1):
• RWM: α = 0.44
• MALA: α = 0.574
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Target Distribution 2 Graphs

Figure 5: Graphs showing the effect sigma has on the acceptance rate of
the product of t1 target distribution
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Target Distribution 3

• Normal(0,0.25) distribution

• f (x , y) = −1
2(4x

2 + 4y2)

• Number of dimensions: d = 2

• Optimal acceptance rates:
• RWM: α = 0.35
• MALA: α = 0.574
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Target Distribution 3 Graphs

Figure 6: Graphs showing the effect sigma has on the acceptance rate of
the Normal(0,0.52) target distribution
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Summary

RWM MALA
N(0,1) 2.9 1.45
t1 19.04 4.19
N(0,0.52) 0.73 0.36

Figure 7: Table showing the optimal σ values for each distribution for
each method
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Is our MCMC Efficient?

Most MCMC algorithms eventually converge on their target
distribution.

An efficient MCMC algorithm will converge if it can explore the
parameter space effectively. Algorithms which do this have good
mixing.
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Convergence: Gelman-Rubin Diagnostic [2] (2)

Diagnositc Procedure:
1 Run m parallel MCMC chains with varied initial conditions.

These ICs should be more dispersed than π(x).
2 Calculate V̂ and W

W is the within chain variance
V̂ is the pooled variance estimate
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Convergence: Gelman-Rubin Diagnostic [2]

This diagnostic defines a quantity R̂ ; known as the potential scale
reduction factor. MCMC converges with target as R̂ → 1.

R̂ =
V̂

W

R̂ ≤ 1.1 is seen as a good indicator of convergence, but not
always...
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Gelman-Rubin Diagnostic

Figure 8: Variation in GR for m = 10 for MALA (left) and RW (right).
Data was obtained using Gelman.plot in CODA.
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Efficiency: ESS

An efficient MCMC is one where a large proportion of the samples
provide quality information on the target distribution. Quantified by
Effective Sample Size:

ESS =
N

1 + 2
∑

i Corrπ(g(X0), g(Xi ))
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Efficiency: ESS

When dealing with multi-variate distributions it is more appropriate
to use the Multi-Variate ESS (MESS) [4], based upon

ESS = n
(
λ2
g

σ2
g

)
[1]

MESS = N

(
|Λg |
|Σg |

) 1
p

Λg is the population covariance matrix. Σ is an estimate of Monte
Carlo standard error.
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ESS Comparison

Figure 9: Uni-variate (t-distb) IC = 8.733, 2D (Gaussian)
IC = [8.733,−0.407]. MALA and RW used tuned h values, and HMC
was tuned at L = 200, ϵ = 0.01. ESS was calculated using coda and
MESS was calculated with mcmcse package
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Adaptive MCMC

Parameter Scaling Optimal Accept. Rate
RWM ∝ d−1 0.234
MALA ∝ d−1/3 0.574
HMC ∝ d−1/4 0.651

Table 2: Optimal Scaling Results

Can we use them on the fly? Adaptive MCMC!
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Adaptive MCMC

Goal: Tune the parameter(s) adaptively to match the “ideal”
parameterisation.

One way to do so ... Solve this:

E [α(x , y)]− α∗ = 0

E
[
(X ,XXT )

]
− (µ,Σ) = 0

Current state x , proposed state y , current step acceptance rate
α(x , y), α∗ optimal acceptance rate, states so far X , target
distribution mean µ covariance Σ.
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Adaptive MCMC

Solve it via Robbins-Monro iterations.

Given current state Xi , proposed step Yi+1, next step Xi+1. Target
acceptance rate α∗. Current stepsize λi , mean µi , covariance
matrix Σi . Current parameter of algorithm σi = λiΣi .

log(λi+1) = log(λi ) + γi+1[α(Xi ,Yi+1)− α∗]

µi+1 = µi + γi+1(Xi+1 − µi )

Σi+1 = Σi + γi+1[(Xi+1 − µi )(Xi+1 − µi )
T − Σi ]

{γi} is the learning rate, e.g. γi = i−0.8.
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Problems with Adaptive MCMC

1 Still ergodic?

2 Some algorithms react badly to poor tuning.
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An Example

Target: 100-dimensional Gaussian with mean 0 and covariance
matrix

Σ =

[
0.012 0

0 I99.

]

Algorithms: RWM and MALA with Adaptive Tuning

Initial Position: 100 dimensional Gaussian with mean 0 and
variance 10.
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Efficiency vs. Robustness to Tuning

Efficiency Robustness
RWM Low High
MALA High Low
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Further Research

1 How the dimension impacts efficiency of algorithms
2 Better convergence diagnostics? (e.g. KSD)
3 How to adapt better? (e.g. theory of adaptive MCMC, ML

adaptations)
4 Formal robustness to tuning (e.g. spectral gap)
5 Combining efficiency and robustness? (e.g. the Barker

proposal)
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Summary

1 RWM, MALA, HMC
2 Parameter tuning and optimal scaling
3 MCMC output diagnostics
4 Adaptive MCMC
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