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Introduction

We will be investigating three main problems:

1 Section A: Stochastic & Deterministic Utility Functions

2 Section B: Regret Based Decision Making

3 Section C: Bayesian Optimisation
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Utility Function

• We want to select an action A. Which do you choose?
• What do we mean by best action?

We consider the existence of a utility function u : A → R. So
decision-making becomes:

a ∈ argmax
a∈A

u(a).
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Example

• A utility function can be seen as a representation to define
individual preferences for goods or services beyond the explicit
financial value of those goods or services.

• In other words, it is a calculation for how much someone
desires something, and it is relative.

• For example, it could be used to encode objectives and
preferences in investor portfolios.

• The functions allow one to place a score on outcomes and
then identify optimal portfolios by maximizing utility.
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Restaurant Problem

We have been provided with some data that rates the quality of
restaurants in Lancaster with 0 being the worst and 10 being the
best. The data is in the table below:

MacDonalds Sultan Blue Moon QSF
4 2 5 3
5 6 5

6

Our aim is to find which is the best restaurant to go to by finding:

â = argmax
a∈A

EX∼pX (·|D,a)[u(x , a)].
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Model

For each restaurant a, we assume that u(a) ∼ N
(
µa, σ

2
a

)
independent across restaurants.

We then assume standard priors:

σ2
a ∼ Inv−Gamma(α, β),

µa | σ2
a ∼ N

(
m, σ2

aκ
)
,

where α, β,m, κ are hyper parameters.
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Calculating the Posterior

We calculate the posterior distribution for any restaurant a.

p
(
µa, σ

2
a | xa

)
∝ f

(
xa | µa, σ

2
a

)
p
(
µa, σ

2
a

)
= f

(
xa | µa, σ

2
a

)
p
(
σ2
a

)
p
(
µa | σ2

a

)
...

∝
(
σ2
a

)α+3/2+na/2 ×

exp

(
− 1
σ2
a

(
β +

1
2
κ (µa −m)2 +

1
2

na∑
i=1

(xa,i − µa)
2

))
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Full Conditionals 1

p
(
σ2
a | µa, xa

)
∼ Inv-Gamma(A,B)

where

A = α+
1
2
+

na
2
,

B = β +
1
2κ

(µa −m)2 +
1
2

na∑
i=1

(xa,i − µa)
2

Decision Making 8 / 33



Introduction Section A.1 Section A.2 Section B

Full Conditionals 2

and we have,

p
(
µa | σ2

a , xa
)
∼ N

(
m + κ

∑na
i=1 xa,i

1 + κna
,

κσ2
a

1 + κna

)
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Gibbs Sampling

• Initialise starting hyperparameters: m = 5, κ = 1, α = 1,
β = 1.

• Step 1: For restaurant a, starting from (µa, σ
2
a) = (5, 5),

generate a Markov Chain with length 1000 using Gibbs
sampler and get an approximation (µ̂a, σ̂a

2).
• Step 2: Repeat step 1 1000 times to get 1000 pairs of

(µ̂a, σ̂a).
• Step 3: For each pair we generate 1000 samples from
N (µ̂a, σ̂a

2) and find the sample mean ûa for each pair.
• Step 4: Then we take the average to get an estimate for the

expectation for each restaurant a
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Results

McDonalds Sultan Blue Moon QSF
E(u(a) | D) 4.6748 4.3371 5.004 4.7349

The best restaurant to visit is Blue Moon.
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Result 2

• Changing α, β and κ, showed no changes in which restaurant
was the best.

• When m is less than 4, QSF is the best, while Blue Moon is
the best when m is larger or equal to 4.

• Sultan always performs the worst.
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Further research

Figure 1: Change in m for
E[P(u(a) > 6|D)]

Figure 2: Change in m for
0.75-quantile
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Conclusions and Further Research

• Blue Moon is the best restaurant to visit
• Our results show that the expectation did not depend

significantly on the hyperparameters α, β and κ.

• Considered changing more of the fixed hyperparameters.

• Changing the data to see what happens
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Defining Risk Behaviour Type

Gamble: I have just given you $50 up front, you now have a
choice.

1 Keep it
2 I flip a coin. Heads: earn an extra $25. Tails: I take $25.

Expected Utility: $50, Choice 1 = Choice 2

Assumes Linear utility function!
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Defining Risk Behaviour Type (2)[1]

Risk-Sensitive: Choice 1

Ezu(z) > Ez±ϵu(z)

Risk-Seeking: Choice 2

Ezu(z) < Ez±ϵu(z)

Ez±ϵu(z) =
1
2
u(z − ϵ) +

1
2
u(z + ϵ)

Figure Credit:Houston et al.[4]
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Utility Function (1)

For Gains we are Risk-Sensitive:

• We choose guaranteed/highest probable gains, even if we can
win more through gambling.

• We are put off by prizes with a larger variance between them.
• Why? If we have nothing we will take anything that

guarantees a gain.
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Utility Function (2)

For losses we are Risk-Seeking. Our utility function is convex

• We choose the option which incurs the lowest loss, even if
there exists a guaranteed loss of a lower quantity.

• E.g. If we inverse the first bet; pay $50 or, 50/50 chance of
losing $25 or $50. We pick the option with greater
uncertainty, but smaller losses.

Combining these facts provides us with an S-curve.

Decision Making 18 / 33



Introduction Section A.1 Section A.2 Section B

Utility Function (3)

Figure 3: Combined S-curve utility function, encapsulating both attitudes
to risk

Decision Making 19 / 33



Introduction Section A.1 Section A.2 Section B

Modifications

• The curves gradient is proportional to an individual’s risk e.g.
steep: minute gains and losses impact utility greatly.

• S-curve may be asymmetrical about 0. Difference in gradient
between loss and gain axis.

• Utility curve will change based upon the current assets of the
individual.

Prospect Theory (Kahneman et al. 1979)[5]: Proposes
alternative ’value’ function is defined by gains relative to current
held assets.
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Introduction

Question: How can we best allocate a finite amount of resources,
with eye to maximising some reward which is also unknown? How
is this done none wastefully?

Applications
• Clinical Trials Allocating finite samples to promising drug

treatments[2]
• Portfolio Maximisation Finding then investing in the most

promising stocks.
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2-Armed Bandit Problem

Problem: There are 2 slot machines with fixed winning
probabilities p1 = 0.5 and p2 = 0.55.

The win/loss for each machine, after one lever-pull k :

Xk ∽ Bernoulli(pk)

Where pk ∈ {p1, p2}

We have T tries on the machines and a single lever-pull per try
t = 0, 1, ...,T .

But, we don’t know p1 or p2!
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Explore-Exploit Algorithms

Explore all levers and identify the most prosperous bandit, then,
Exploit for the highest gains.

Explore-Exploit Methods:
• Upper Confidence Bound-1 (UCB-1)
• Thompson Sampling (TS)
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UCB-1

• We have 2 arms: a1 & a2

• For each round t ∈ 1, ...,T , we assign it an arm to pull
• For t = 1 we allocate a1 and for t = 2 we allocate a2

• For values of t ∈ {3, ...,T}, for each arm k we calculate :

µk,t =

∑t−1
s=1 Xk,sI{as = k}∑t−1

s=1 I{as = k}
+

√
2log(t)∑t−1

s=1 I{as = k}

• We assign each t ∈ {3, ...,T} to arm k∗, where

k∗ = argmaxk µk,t
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TS

Thompson Sampling allows us to elucidate bandit probabilities;
sampling from assumed posteriors:

p̂k,t ∽ π(pk |Xk,1:t−1)

On each trial t p̂k,t is calculated for both levers k .

k∗ = argmaxk p̂k,t

k∗’s lever is pulled and its posterior is updated from machine
outcome.
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TS: Posterior

Conjugate prior for Bernoulli is Beta so

π(p̂k) ∽ Beta(αk , βk)

Therefore π(pk |Xk,1:t−1) ∽ Beta(a0k + wk,1:t−1,B0k + lk,1:t−1).

Hyperparameters αk and βk are defined by initial quantities a0k
and B0k .

wk,1:t−1 and lk,1:t−1 are the cumulative wins and losses for each
lever k at a particular trial t.
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Experiment

Goal: Compare the effectiveness of each method based upon how
they handle regret.

Regret =
∑

k:∆k<0

∆kE

(
T∑
t=1

I{k∗t = k}

)
Where ∆k = p∗ − pk , is the probability difference between optimal
and given lever k .
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Experiment 2

In all experiments the number of repeat samples N = 500. TS
initial hyperparameters a01 = a02 = B01 = B02 = 2 [3]:

1 Varying T ∈ {103, 104}
2 Setting p1 = 0.05 and p2 = 0.95 (keeping T = 103)
3 (TS Only) varying posterior hyperparameters
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Results: T Length

Histogram of the
regrets of UCB1
and TS for varied T
lengths.
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Results: Varying p1 & p2

Histogram of the
regrets of UCB-1
and TS.
With p1=0.5 &
p2 = 0.55 (left) and
p1=0.05 &
p2 = 0.95 (right)

Decision Making 30 / 33



Introduction Section A.1 Section A.2 Section B

Results: Changing hyperparameters in TS

Figure 4: Histograms of TS for different initial hyperparameters
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Further Research

• Investigate method responses to K >> 2 algorithms
• Bandits which produce different reward amounts as
• Adversarial bandits; win/loss probabilities change to counter

algorithm.

• Measure Regret per turn to measure the rate at which the
methods converge on the best levers.
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Bayesian Optimisation Introduction

• We want to find the maximizer or the minimizer of an
unknown function f (x).

• It is usually used to optimize functions that are expensive to
evaluate.

• Applications of Bayesian Optimization include optimizing
control parameters in robotics and evaluating the performance
of wind turbines
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Bayesian Optimisation Method

Algorithm 1 Bayesian Optimisation Algorithm

Require: Domain X , Objective function f , prior distribution π0,
Empty data set D0
for t=1,2,. . .do

Select xt = argmaxx∈X αn(x|Dt−1)
Observe yt = f (x) + ϵt
Dt = Dt−1 ∪ {(xt , yt)}
Perform Bayesian update to obtain πt

end for
return x∗
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Acquisition Function

Definition: An acquisition function is a function that helps you
determine which data areas you should exploit, and which areas of
data you should explore to help you search for the global optimum
solution.
The acquisition function estimates the benefit that is offered by an
evaluation with respect to solving x∗ = argmaxx∈X f (x)
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Set up

f (x) ∼ N(µn(x), σ
2
n(x))

f ∗n = min{f (x1), f (x2), ..., f (xn)}

Dn = {(x1, f (x1)), (x2, f (x2)), ..., (xn, f (xn))}

Utility function: u(x) = max{0, f ∗n − f (x)}

u(x) =

{
0 if f (x) > f ∗n
f ∗n − f (x) if f (x) ≤ f ∗n

Decision Making 4 / 17



C1 C2 C3 Conclusion

Closed Form Expression i

Expected Improvement (EI) acquisition function αn(x):
The expected size of improvement over the current optimum f ∗n

αn(x) = E[u(x)|Dn]

= P[f (x) > f ∗n ] · E[0|Dn, f (x) > f ∗n ]

+ P[f (x) ≤ f ∗n ] · E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ]

= P[f (x) ≤ f ∗n ] · E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ]

= Φ

(
f ∗n − µn(x)

σn(x)

)
· E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ]

= Φ(g∗
n ) · E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ]
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Closed Form Expression ii

E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ]

= E[f ∗n |Dn, f (x) ≤ f ∗n ] + E[−f (x)|Dn, f (x) ≤ f ∗n ]

= f ∗n − E[f (x)|Dn, f (x) ≤ f ∗n ]

Z ∼ N(0, 1)
f(x) ∼ N(µn(x), σ

2
n(x))

f(x) = µn(x) + σn(x)Z

f (x) ≤ f ∗n

=⇒ f (x)− µn(x)

σn(x)
≤ f ∗n − µn(x)

σn(x)

=⇒ Z ≤ g∗
n
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Closed Form Expression iii

E[f (x)|Dn, f (x) ≤ f ∗n ]

= E[µn(x) + σn(x)Z |Dn,Z ≤ g∗
n ]

= E[µn(x)|Dn,Z ≤ g∗
n ] + E[σn(x)Z |Dn,Z ≤ g∗

n ]

=

∫ g∗
n

−∞ µn(x)ϕ(z) · dz +
∫ g∗

n
−∞ σn(x)zϕ(z) · dz

P(Z ≤ g∗
n )

=
µn(x)

∫ g∗
n

−∞ ϕ(z) · dz + σn(x)
∫ g∗

n
−∞ zϕ(z) · dz

P(Z ≤ g∗
n )
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Closed Form Expression iv

=
µn(x)

∫ g∗
n

−∞ ϕ(z) · dz + σn(x)
∫ g∗

n
−∞ zϕ(z) · dz

P(Z ≤ g∗
n )

= µn(x)
Φ(g∗

n )

Φ(g∗
n )

− σn(x)
ϕ(g∗

n )

Φ(g∗
n )

= µn(x)− σn(x)
ϕ(g∗

n )

Φ(g∗
n )
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Closed Form Expression v

Combining these equations:

αn(x) = Φ(g∗
n ) · E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ]

E[f ∗n − f (x)|Dn, f (x) ≤ f ∗n ] = f ∗n − E[f (x)|Dn, f (x) ≤ f ∗n ]

E[f (x)|Dn, f (x) ≤ f ∗n ] = µn(x)− σn(x)
ϕ(g∗

n )

Φ(g∗
n )

We find the closed form expression:

αn(x) = Φ(g∗
n ) ·

(
f ∗n − µn(x) + σn(x)

ϕ(g∗
n )

Φ(g∗
n )

)
= (f ∗n − µn(x))Φ(g

∗
n ) + σn(x)ϕ(g

∗
n )
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Interpreting αn(x)

αn(x) = (f ∗n − µn(x))Φ(g
∗
n )︸ ︷︷ ︸

Exploitation

+σn(x)ϕ(g
∗
n )︸ ︷︷ ︸

Exploration

• The first term increases when the query points provide a low
mean, thus encouraging exploitation (evaluating at points with
low mean)

• The second term increases for when the query points provide a
high variance, encouraging exploration. (evaluating at points
with high uncertainty)
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Exploitation and Exploration Graphs

Figure 1: Exploitation (Sampling x with small µ2
t−1(x))

Figure 2: Exploration (Sampling x with large σ2
t−1(x))

[3]
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EI vs GP-UCB

GP-UCB:
αn(x ;β) = −µn(x) + βσn(x)

• The difference is that with EI the acquisition is derived from
the utility function.

• The advantage of using EI is that we do not have to choose
the value of tuning parameter.

• Drawbacks: over-exploitation and under-exploration [2]

Decision Making 12 / 17



C1 C2 C3 Conclusion

Discrete vs Continuous

Multi-armed Bandits problem (Discrete):
• Given a finite number of actions, maximises expected

cumulative reward over T rounds.
• Strategies: UCB, Thompson Sampling, . . .

Bayesian Optimization (Continuous):
• Given a black-box function, find the global maximizer or

minimizer.
• Regret-based strategies: GP-UCB, Thompson Sampling, . . .
• Other strategies: Expected Improvement(EI), . . .
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Regret-based strategies i

GP-UCB:
• Minimize the cumulative regret, RT =

∑T
t=1 rt ,

rt = f (xt)− f (x∗)
• A regret bound of O(

√
dTγ) with high probability [4]

Thompson:
• P(∥ x t − x∗ ∥> ϵ) ≤ C td/2

δdϵ
exp(−cδ2

ϵ t)

where C , c are positive constants and [1]
Both are provably convergent.
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Regret-based strategies ii

• Regret-based strategies focus on minimizing cumulative regret,
which is not entirely equivalent to finding the minimizer or
maximizer.

• GP-UCB performs similarly as to EI.[4]
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Further Research and Conclusion

• Simulation study comparing Gp-UCB and Thompson Sampling
to EI.

• We have explored the breadth of the literature around decision
making under sincerity.

• It has opened us up to many questions, which we will be
interesting research further.
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