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The discovery of the ubiquity of biomolecular condensates within physiology has generated a great
amount of interest and has resurrected the field of Liquid Liquid Phase Separation mechanics. This
is due to the implications and possible innovations their study has for the medical, biological and
material sciences. To contribute to these efforts several versions of a pseudo-spectral code have
been developed, which are appropriate for modelling the long-term converging of multicomponent
systems, which spontaneously phase separate due to a thermal quench. Owing to the implicit nature
of treating the stiff terms, one can use larger time-steps than Explicit Euler methods, among other
finite difference methods. The pseudo-spectral method can be easily extended to more components
and greater spatial dimensions, and can model systems with order parameter dependent mobilities,
as well as coarsening dynamics for both bulk and interfacial diffusion.

I. INTRODUCTION

The observations by Brangwynne et al [1] of the liq-
uid droplet like behaviour displayed by P-granules,
and the subsequent identification of other such struc-
tures[2][3][4][5] have demonstrated the ubiquity of
biomolecular condensates within biology. This discovery
has generated a significant amount of interest in the sci-
entific community. In principle, a biomolecular conden-
sate is a membraneless condensed liquid like droplet of
macro-molecular components (e.g. proteins, nucleic acids
etc.) suspended within a molecularly depleted or en-
riched phase[2]. (fig.1). Despite the lack of a membrane,
these novel structures are thought to behave as biochem-
ical reactors creating the ideal conditions for heightened
biochemical reaction events, metabolic efficiency[6] and
a maintained morphology for minutes to hours[7]. These
constructs have been demonstrated to be necessary for

FIG. 1. A biomolecular condensate droplet (grey region)
and its interactions with the molecularly depleted or en-
riched phase. The BC droplet is composed of various scaffold
proteins, macro-molecules are freely exchanged between the
dense and condensed phases.

important bodily functions including chromatin organi-
sation, transcription and the immune response[8].
The cell is somehow able to organise this discordant col-
lection of macromolecules, numbering in the hundred or
thousands into tens of co-existing phases of varying func-
tional morphologies composed of specific biomolecular
species. This intricate example of self-assembly is fa-
cilitated via Liquid-Liquid Phase Separation (LLPS), in
which a liquid mixture composed of two or more sub-
stances de-mixes into two separate immiscible phases[9].
An intuitive example of LLPS is a vinaigrette salad dress-
ing, the transient hydrophobic interactions of the non-
polar oil and polar vinegar are sufficient to overcome un-
favourable entropy associated with the more ordered de-
mixed state. Therefore, the vinegar forms a sediment or
suspension separate from the oil. Much of the enthusi-
asm towards biomolecular condensates, their formation
and behaviour stems from the implication and applica-
tions their understanding has for medicine and the ma-
terials sciences. Aberrations in the processes which gov-
ern and generate biomolecular condensates are thought
to contribute towards debilitating illnesses such as can-
cer and various neuro-degenerative diseases[10][8]. These
aberrations are thought to be brought on by liquid solid
phase separation, where droplet condensates increase in
density forming fibrous, gel or solid-like aggregates, im-
peding the transport of macromoleules [11]. The exact
mechanisms for how this occurs is till a mystery, how-
ever developing methods to describe how phase separated
droplets develop their final packing structures could help
bridge the gap towards this understanding[12]. Building
on this, determining the parameters that dictate final
droplet morphology is a desirable goal for the material
sciences. Doing so may allows us to manipulate droplet
formation, producing so called programmable droplets,
possibly paving the way for developments in advanced
adaptive and responsive materials and medical drug de-
sign.(Insert Citations Here).
From our exploration of the literature it appears that a
significant amount of attention is focused upon IDP/R
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FIG. 2. A comparison of simulation scales for a varying ab-
straction. QM and Atomistic simulations are rich in detail,
but are restricted to smaller length and time scales.

(Intrinsically Disordered Proteins/Region)1interactions,
droplet rheology, biomolecular condensate and macro-
molecule identification and phase separation dynamics.
Rheology and identification studies are usually conducted
in vitro and in vivo via experimental analysis[14][15].
Phase separation dynamics are modelled with compu-
tational simulations at various length scales and com-
plexities[16][17][18][19]. Experimental approaches have
already been discussed at length in the literature review,
as our project is focused on computational efforts they
will be omitted. When attempting to simulate biologi-
cal phase separation there are two factors that must be
considered, the first is an appropriate model to approxi-
mate phase separation in the computational space. The
second is the attention that must be place upon the scale
and abstraction of the system, see fig.2 for a compara-
tive illustration of these scales. As far as a model is con-
cerned, Liquid Liquid Phase Separation has been stud-
ied extensively throughout the 20th century for synthetic
polymers in solvents or polymer melts. A notable out-
come of this work is the Flory Huggins general solution
Theory[20] (see Section 1B), which has proven to be an
accurate representation of regular polymer solutions after
experimental analysis [21][22]. At its most rudimentary
Flory Huggins Theory (FHT) is a representation of bi-
nary component systems, but has since been extended to
multicomponent systems[23]. As such, FHT has seen ap-
plication in some simulations exploring mesoscale LLPS
dynamics in a biological context[24][25]. These endeav-
ours have suggested that FHT free energy must be modi-

1 IDPs are proteins which are thought to be the main drivers of
phase separation, and may possibly play a part in liquid to solid
transitions. Their mercurial confirmations allow for a greater
mutivalency, thus more favourable interactions with other macro-
molecules[13].

fied to include the effects of interfacial energy on droplet
development which will be discussed later. Most other
studies of multicomponet systems apply random matrix
theory, pioneered by Frenkel and Jacobs[26][18]. This
method only captures system outcomes at equilibrium
rather than transience. The evolution of a chosen model
must then be tracked using some form of dynamical sim-
ulation, this is where we must consider a simulation’s
architecture. Atomistic simulations have length scales of
a few hundred nanometers and nanosecond timescales.
They are useful for the study of intermolecular interac-
tions between biopolymers and macromolecules, particu-
larly the roles of different forces and molecule interactions
within the nascent stages of phase separation. Atomistic
simulations do have limits however, due to the handling
of high resolution systems a significant amount of com-
putation is required which reduces the simulations scope
and observation time. A compromise is to reduce gran-
ularity with a coarse grained simulation; which treats
groups of molecules of a system as pseudo-particles with
averaged out effects tuned by the designer, in compar-
ison to individual particle interactions. This is a more
favourable approach for simulations of this scale, but is
still limited for studying the evolution of coarsening and
growth in biomolecular condensates. Timescales are lim-
ited to micro seconds. These previous examples serve
their purpose well, but capturing the formation and evo-
lution of biomolecular condensates requires a much larger
time scales on the order of milliseconds and beyond.
Therefore, we can turn to mesoscale simulations, where
we treat molecular components holistically using a scalar
density field. We can then perform molecular dynam-
ics simulations applying numerical analysis or grid based
Monte Carlo methods in order to approximate the bulk
diffusion of material within the density field. Mesoscale
simulations of this type are the favoured approach to
studying the long term stability and evolution of multi
component systems[18].
This paper hopes to be a proof of concept and to lay
the groundwork for future research in this topic with our
construction and demonstration of a general multicompo-
nent psuedo-spectral simulation for LLPS. Taking a sim-
ilar approach to Mao et al[24] we used the Cahn-Hilliard
equation to capture system dynamics, and lessons from
Pezzutti et al [27] guided our approach to the codes ar-
chitecture. A psuedo-spectral scheme is suitable for our
aims as it increases the ceiling on the time-step limit;
thus simulations can run longer for a smaller penalty on
computational power. This is desirable as certain phe-
nomenon can only be observed after long time periods.
We chose the Cahn-Hilliard equation (CHE), due to its
conservation of the order parameter and the incorpora-
tion of interfacial parameters and long range transport
dynamics which are both important for describing coars-
ening processes. Interfacial effects have been demon-
strated in the literature and theory to have a noticeable
impact on domain development[28][29], as droplet con-
figuration is dictated by the minimisation of this energy.
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This factor has seen very little attention in our explo-
ration of the literature, thus we also consider this factor
in our simulations via the addition of extra terms in the
free energy functional. We also wanted to understand
how order parameter dependent mobility and interfacial
stiffness parameters impacted droplet development. Due
to the very little time afforded to this project, and the
ambition of our scope, we were limited to only a super-
ficial validation of our methods. From our analysis, the
code appears to effectively and accurately describe coars-
ening and growth mechanics with very little error in order
parameter conservation. As for the study of droplet de-
velopment this topic can be left for others to build upon.
To help facilitate these efforts we have provided appropri-
ate methodology and analytical methods, the simulation
code can be found via the github link in Appendix B.

II. METHODOLOGY

A. Flory Huggins and φ4 Theory

We can describe the phase-ordering dynamics of a sys-
tem which has undergone a quench into a state where
conditions facilitate spontaneous phase separation with
three stages. The first stage, Onset, sees the rapid for-
mation of single phase domains or droplets, followed by
growth where these droplets swell with the diffusion of
surrounding material local to the droplet. With the de-
pletion of the surrounding material growth slows, further
aggregation occurs through the assimilation of smaller
droplets into larger droplets by long range transport, a
process called coarsening. We can describe onset and
growth mechanics with an appropriate dynamical equa-
tion and a free energy equation possessing two minima
representing the component phase densities of the sys-
tems relaxed state. Coarsening, however, is dependent
on interfacial energy to determine how easily smaller
droplets assimilate into larger ones. Therefore, the to-
tal free energy must include a bulk term fb(ϕ) and a
non-local gradient term κ(ϕ)(∇ϕ)2 to account for energy
costs associated with the spatial gradients of the density
field. The κ coefficient embodies the interfacial stiffness
of phase surfaces. Like mobility in a real system κ can
be dependent on volume fraction, atomic interaction pa-
rameters and temperature[30]. In a regular solution κ
is constant. Taking on these considerations, the general
form of the free energy functional for d dimensions is
thus:

F [ϕ(r, t)]

kBT
=

∫

[

fb(ϕ) + κ(ϕ)(∇ϕ)2
]

ddr⃗ (1)

There are some generic features of the bulk free-energy,
fb(ϕ), irrespective of its functional form, which we discuss
here. The shape of the bulk free-energy, fb(ϕ) depends
on temperature. At high temperatures, it is convex up-
wards and the mixed state with an uniform order param-
eter across the system is preferred (fig.)3a. However, as

one lowers the temperature, fb(ϕ), develops a non-convex
region where f ′′b (ϕ) < 0, and this opens up a miscibility
gap in the order parameter values and the system sponta-
neously phase separates in order to lower its free-energy
(fig.)3b. This phase-separated state implies an order pa-
rameter which is positions dependent and as a result it
costs surface energy penalty. Thus the final state of a
phase separated system is one which tends to minimal
area of the interface. The coarsening process is dictated
by this type of free-energy functional.

FIG. 3. Bulk free energies for asymmetric polymer mixed (a)
and phase separated (b) system . φA, φB and φ0 are the
system’s equilibrium compositions for a phase separated and
mixed state.

Flory-Huggins general solution theory or FHT de-
scribes the phase behaviour or the thermodynamics of a
mixed polymer solution and provides a desirable free en-
ergy expression. All system interactions and temperature
are contained within a single variable, and the equation’s
simplicity allows the extension to multiple components.
The general Flory-Huggins free energy equation for an
incompressible binary polymer system can be described
by the component polymer chain lengths NA and NB ,
temperature dependent interaction parameter χ and or-
der parameter ϕ. Where ϕ in the context of soft matter
physics is a system components volume fraction. For an
n-component system a component’s volume fraction ϕi
is defined by its polymer chain length Ni and specific

volume νi =
(

∂V
∂ni

)

T,P,N(j=1,2,3...N)
for the following ex-
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pression[31]:

ϕi =
νiNi

∑N
j=1 νjNj

(2)

The Flory-Huggins equation is thus:

f(ϕ)b
kBT

=
ϕ

NA
ln(ϕ) +

(1− ϕ)

NB
ln(1− ϕ) + χϕ(1− ϕ) (3)

The first two terms describe the systems entropic mixing
energy, contributing to the systems favourability towards
a mixed state and the third term is the enthalpic energy
contribution, which favours phase separation. Where
χ = A + B

T (A, and B are constants) is the temper-
ature dependent miscibility parameter that determines
whether a stable thermodynamic state is homogeneous
(mixed) for χ < χc or phase separated for χ > χc where
χc is a critical value specific to the system. The con-
stants of the χ parameter are determined by the rela-
tive interactions between various species. Where T is
the absolute temperature, and kB the Boltzmann con-
stant. As we are only considering a unimolecular mix-
ture NA = NB = 1. After a mixed system undergoes
a quench into a state where phase separation is more
energetically favourable, the bulk mass of each compo-
nent will diffuse to regions with lower chemical poten-
tial for that component. During this period the system
is out of equilibrium and the component mass diffuses
stochastically; slowing as the separated domains tend to-
wards the coexistence volume fractions. At long time pe-
riods we consider the system to reach equilibrium where
thermodynamic stability is maintained by the balance of
the chemical and mechanical forces of each component
i.e. µA = ∂F

∂ϕA
= µB = ∂F

∂ϕB
(chemical potential) and

ΠA = ϕA
∂F
∂ϕA

− F = ΠB = ϕB
∂F
∂ϕB

− F (osmotic pres-

sure i.e. pressure exerted by the bulk phases). We can
demonstrate this proviso graphically in fig.3b. Here we
draw a loci between the two minima ϕA and ϕB repre-
senting the coexistence volume fractions for the phase
separated system. We call the loci joining the two min-
ima the common tangent, as the gradients at the two
coexistence densities are equal. For a series of free en-
ergy curves for varying values of χ we can determine the
temperature-dependent coexistence densities, ϕA(T ) and
ϕB(T ). The locus of the coexistence densities yields the
binodal or the coexistence curve. Plotting the locus of

the free energies inflection points (where ∂2F
∂ϕ2 = 0) gives

us the spinodal line. The outcome of these tasks can
be seen in fig.4, where the region within the spinodal
is called the unstable region. The point of intersection
between the spinodal and binodal is the critical point

(where ∂3F
∂ϕ3 = 0) it is defined as the absolute minimum

conditions (minimum ϕ and χ values) required for a sys-
tem to phase separate. A system transitioning to the un-
stable region will undergo spontaneous phase separation,
forming a labyrinthine de-mixed network, an example of
this behaviour for a 50:50 binary mixture can be seen in

FIG. 4. A phase diagram for a binary system, displaying the
binodal (coexistence curve), spinodal and critical point.

fig.7. This process is called spinodal decomposition (SD).
Another outcome occurs if the system transitions to the
metastable region; the space enveloped by the binodal
but adjacent to the spindoal in fig.4. In the metastable
region as system can remain mixed until arbitrary en-
ergy fluctuations or impurities push the system to de-mix
through nucleation(akin to how ice crystals are formed).
The dominant component of the system (where ϕA > ϕB
or vice versa) remains the medium in which the lesser
component is sequestered into concentrated droplets dis-
persed throughout the dominant component. After the
initial quench to either the unstable or metastable re-
gion, the component domains formed by SD or nucle-
ation go through coarsening and growth processes. This
continues until an energetically favourable configuration
is reached, where we can consider the system to be at
equilibrium as while diffusion is still occurring it is not
significant enough to cause changes to droplet sizes. The
final morphology of droplets after growth and coarsening
can vary randomly, binary systems evolve into a single
droplet or sedimentary layers of opposite phases (zebra
stripes). The morphology of ternary systems is still an
open question in this field as there are many possible
permutations for the organisation of these phases. Pos-
sible configurations are also governed by many other fac-
tors other than the random initial density distribution
of components in the mixture but, predicting these out-
comes will give us insight into how biology uses phase
separation for creation of cell machinery and structures,
among other things. The ternary structures identified by
others include the core-shell (or Russian doll) structure
and the Janus droplet, the latter is a mechanically stable
composition of multiple interfacing droplets[24].
FHT’s limitations do become apparent when studying in-
termolecular interactions in more detail, when accounting
for hydrogen bonding, polymer self-interactions and the
behaviour of salts, FHT’s results do not agree with em-
pirical data[32][33]. Although, FHT’s flexibility allows
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for the expansion of the χ parameter to model hydrogen
bonding and other strong interactions as suggested by
Wolf[33]. As we are not considering this level of detail
FHT still serves our purposes, and this task can be left
to those who wish to expand on this research.
While FHT is the most appropriate for modelling poly-

mer mixtures, an analogous but simpler free energy ex-
pression is provided by scalar ϕ4 theory a facet of quan-
tum field theory, which has been previously applied to
magnetic systems, solid solutions, lattice gas models
etc..Adapting the ϕ4 potential energy equation to a sys-
tem with temperature dependence we are given this ex-
pression for the bulk free energy[34]:

fb(ϕ) =
−a
2

(Tc − T )ϕ2 +
b

4
ϕ4 (4)

Where a and b are constants, T is temperature and Tc is
the systems critical temperature. Like with FHT, for
T > Tc, the bulk free-energy has a single minimum,
however, for T < Tc, the bulk free-energy exhibit two
minima separated by a miscibility gap. Performing non-

dimensionalisation (ϕ̂ = ϕ
ϕ0
, where ϕ0 is some constant)

on the above expression for T < Tc yields a free energy
expression for a phase separated system, where the order
parameter ϕ is confined to the range 1 and -1:

f(ϕ) =
ϕ4

4
− ϕ2

2
(5)

The advantage of ϕ4 over FHT free energy is the absence
of the lnϕ term leading to stabler simulations. Consider-
ing systems with NA = NB = 1 and assuming T > Tc, ϕ

4

theory proves to have a much more suitable replacement
free energy for time intensive simulations.

B. Cahn-Hilliard Equation (Model B)

Mescoscale phase separation dynamics following a
quench into the unstable or metastable region can be
modelled using a number of non linear hydrodynamical
stochastic PDEs. The standard naming scheme for these
equations is alphabetical, they are models A-H. However,
Berry et al [23] identifies models A, B, C and H as being
sufficient for describing the growth and coarsening be-
haviour of phase separated systems. Because we do not
need to explicitly consider hydrodynamic interactions as
they are generally screened in polymeric liquids[35] we
can eliminate model H. Model A is limited by its inability
to describe long range mass transport and non-conserved
order parameter, our concern is the evolution of phase
behaviour for closed systems. Model B is the more suit-
able option due to its conservation of the order parameter
and description of long range transport; required to de-
scribe coarsening. Model C is an amalgamation of both
A and B and can also be discounted. Model B, or The
Cahn-Hilliard equation can be generally expressed in the

following way[36]:

∂ϕ(r⃗, t)

∂t
= ∇ ·

[

M(ϕ)∇δF [ϕ(r⃗, t)]

δϕ(r⃗, t)
+ θ(r⃗, t)

]

(6)

The exterior divergence operator ensures the conserva-
tion of the order parameter and also a conserved noise
and M(ϕ) is the mobility coefficient. The mobility co-
efficient determines the ease at which material is trans-
ported throughout the density field. For example the
larger the volume fraction in some minute area the slower
the rate of transport. This also applies to long polymer
chains which are significantly slower than solvents for
passive transport on account of polymer physical charac-
teristics. The functional derivative term is the chemical
potential field µ. To account for random thermal noise
we include the stochastic noise term θ(r⃗, t), which obeys
the fluctuation-dissipation relation ⟨θj(r, t)θj(r′, t′)⟩ =
2MkbTδijδ(r − r

′)δ(t − t′); a relationship between the
noise strength (left) and mobility. The inclusion of the
noise term is necessary in simulations of nucleation and
growth. The noise term mimics the random thermal noise
which facilitate the formation and dissipation of droplets
in the growth and coarsening phases of the process.As we
are interested in studying the dynamics deep inside the
spinodal regime, we do not include thermal noise in our
simulations.
If we consider both κ and M to be constant the model

B dynamical evolution equation is simplified further:

∂ϕ(r⃗, t)

∂t
=M

[

∇2 ∂fb
∂ϕ

− 2κ∇4ϕ

]

(7)

C. Solving the Cahn-Hilliard Equation

The Cahn-Hilliard equation does not poses an analyt-
ical solution, instead, its solution can obtained through
some numerical integration method. A traditional ap-
proach would be to apply a discrete finite element nu-
merical integration scheme, such as the explicit Euler
method or Runge-Kutta. These techniques are hindered
by the time step ∆t limit of spatial discretization and
the maximum time-step, ∆tmax ∼ ∆x4. As the spatial
discretisation length, ∆x, must be less than the interfa-
cial width, z, the following inequality must be followed
: ∆x <

√
κ (where z

√
κ, as the interfacial width scales

as the square root of the order parameter stiffness, κ).
However, the coarsening process is extremely sluggish,
especially at long times, when typical domain sizes, l(t)
grows as t1/3. This goes by the name of Lifshiz-Slyozov
coarsening and thus the velocities of the front scales as
l(t)/t ∼ t−

2
3 . Thus the coarsening rate becomes slower

and slower during the late-stage coarsening. This renders
the explicit Euler methods, with an upper limit of time-
step, impractical [27]. Thus we have opted for a Spectral
Numerical Integration Scheme to obtain the PDEs solu-
tion, more precisely the Fourier collocation method or
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pseudospectral method, which is an unconditionally sta-
ble algorithm and allows for large time-steps. In contrast
to the finite difference examples already stated, spectral
methods are applied to an entire domain to produce an
approximation for system evolution. What is meant by
this? For a finite difference method one selects a local
point within a domain and calculates its variance from
neighbouring points. The psuedo-spectral method allows
us to act globally across the domain as we transform the
system to k-space. In doing this our PDE instead be-
comes a series of coupled differential equations for each
point in k-space considered for the problem. The unique
properties of the psuedo-spectral methods causes solu-
tion error to decrease rapidly towards 0 as the number of
grid points N → ∞. This quick convergence in error is
a consequence of the Fourier Series’ coefficients decaying
rapidly in comparison the algebraic series of finite dif-
ference methods[37]. To implement the psuedo-spectral
method, our first step is to represent our density func-
tion ϕ(r, t) as a sum of the product of some basis function

ψn(r⃗) and the corresponding weighting factors ϕ̂n(t) for
n reciprocal space lattice points.

ϕ(r, t) =
∑

n

ϕ̂n(t)ψn(r⃗) (8)

As we are considering our system in bulk, where the den-
sity fields follow periodic boundary conditions, we require
a periodic trial function for ψn(r⃗). In this case we may

use the trigonometric polynomial: ψn(r⃗) = eik⃗·r⃗. Where

k⃗ = 2πn⃗r

L and L is the domain size. Again as we are
dealing with periodic boundary conditions our domain n
spans from n = −N/2 + 1 to n = N/2. Substituting
this criterion into eq.8 yields an expression for the Fast
Fourier Transform (FFT):

ϕ(r, t) =

N/2
∑

−N/2+1

ϕ̃n(t)e
ik⃗n·r⃗j (9)

Where ˜denotes a Fourier transformed variable. By mul-

tiplying both sides of the above equation by e−ik⃗·r⃗ and
summing over our real space points i.e. j = 0, 1, 2, 3..N
we are left with the inverse FFT:

ϕ̃n(t) =
1

N

N
∑

j=0

ϕn(rj , t)e
−ik⃗n·r⃗j (10)

This above equation gives us a means to return our equa-
tion back from k-space to real space after we have calcu-
lated an approximation for the systems evolution. Sub-
stituting eq.9 into our most rudimentary variant of the
Cahn-Hilliard equation eq.7 where bothM and κ are con-
stant, we are given a series of simpler coupled ODEs for
each point in k-space. One can then apply a finite differ-
ence or other numerical integration method to determine
a solution for these coupled equations in k-space. The
solution in physical space is then obtained through an

inverse FFT. In our case we, restructure our generalised
psuedo-spectral Cahn-Hilliard equation into the Explicit-
Euler scheme to derive an equation for time evolution of
an old density field ϕn towards a new field ϕn+1 [38]:

ϕ̃n+1(k⃗) = ϕ̃n(k⃗)−∆t

[

k
2

{

∂f ′b
∂ϕ′

}n

k⃗

+ κk4ϕ̃n
]

(11)

Where
{

∂f ′

b

∂ϕ′

}n

k⃗
is the Fourier transform of the expres-

sion
∂f ′

b

∂ϕ′
and k = |⃗k|. The free energy derivative term is

non-linear in k-space and is responsible for the coupling
of the different k modes. The fourth order term k

4ϕ̃ is
linear, and therefore can be treated implicitly we can use
this behaviour to again restructure our time evolution
equation into a semi-implicit format[38]. In this case our
linear fourth-order term is treated implicitly and non-
linear terms are treated explicitly. We can thus write
our time evolution equation like so:

(1 + ∆tκk4)ϕ̃n+1(k⃗) = ϕ̃n(k⃗)−∆tk2

{

∂f ′b
∂ϕ′

}n

k⃗

(12)

Compounding all non-linear terms into a generic variable
N(ϕ) and linear terms into the variable L(ϕ) produces
the general format of the psuedo-spectral method as ap-
plied to more sophisticated variants of the CHE found in
this paper:

ϕ̃n+1(k⃗) =
ϕ̃n(k⃗) + ∆tÑk(ϕ

n)

1 + ∆tLk
(13)

All psuedo-spectral CHE simulations were conducted in
python 3.8, the FFT and IFFT functions were taken from
the scipy 1.8.0 library[39] and are based upon the Coo-
ley and Tukey method[40]. The general structure of the
python code can be found in fig.5. The gradient, Lapla-
cian and biharmonic operations were all conducted using
central difference theorem, 3-point stencil (5-point in 2D)
and 5-point stencil (13-point in 2D) respectively. An ex-
ample of 2D simulation output for a system undergoing
spindoal decomposition can be found in fig.6, as expected
we see the characteristic growth and coarsening processes
for t > 100. t = 1 − 100 shows the spontaneous phase
separation via spinodal decomposition, then proceeding
onto coarsening from t = 1 − 100 with the thinning out
of defects.

D. Considering κ and M with φ dependence

Our simulation of phase separation dynamics more
closely approximates real systems with the inclusion of ϕ
dependence forM and κ. We can adapt our general CHE
where this is the case (see Appendix B for full deriva-
tion), with the addition and subtraction of a linear term
to maintain the implicit explicit psuedo-spectral struc-
ture in eq.13. With this technique our non-linear and
linear terms become:

N(ϕ) =M(ϕ)∇2µ(ϕ) +∇M(ϕ) · ∇µ(ϕ) +A∇4ϕ (14)
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FIG. 5. Flowchart description of the python implementation
for eq.13. Apart from the slight deviation in eq.12 for bi-
nary systems with constant mobility parameters, every other
CHE simulation in this project is fundamentally based on this
method

L(ϕ) = −A∇4ϕ (15)

Where A is a stability constant to ensure mass drift is
minimised. As the number of mathematical terms in-
creases the simulation’s stability decreases significantly,
A is required to rectify this issue. Preliminary tests and
the experiences of Pezzutti et al [27] suggests the optimal
value is A = χ ∗ 1

2 , for ϕ
4 free energy this is a 1

2 . Due to
limitations brought on by time and scope, we only consid-
ered non-constant M and treated κ as constant, however
we have included an expression for both so others may
build on this work. If we only treat κ as constant and
express mobility as a function where M(ϕ = 1

2 ) = 1 and
decreases as ϕ → 0 and ϕ → 1. This form of M(ϕ)
ensures that the diffusion takes place at the interface
(ϕ ∼ 1/2 for the Flory-Huggins free-energy and ϕ ∼ 0 for
the ϕ4 theory) and not in the bulk regions. The dynam-
ics generated by interfacial diffusion is much slower than
that arising from bulk diffusion and it can be quantified
via the different exponents one observes in the growth
law[27]. We can therefore express mobility like so:

M(ϕ) = 1− a(ϕ+ b)2 (16)

Where a is a constant controlling the rate at which mobil-
ity decreases and b is a graph transformation parameter.
b allows this expression to be used for ϕ4 where b = 0

FIG. 6. Temporal snapshots of the direct output for an itera-
tion of the Cahn-Hilliard equation with a Flory-Huggins free
energy, for a binary 50:50 initial composition where χ = 2.5
for constant mobility coefficients D = 1 and a constant order
parameter stiffness, κ = 1. The simulation was performed
for 1 × 105 time steps where dx = 0.5, and dt = 0.5, on a
512× 512 grid.

and Flory-Huggins where b = − 1
2 . Considering only

non-constant mobility are non linear and linear terms
are thus:

N(ϕ) = (1− a(b+ ϕ)2)∇2µ(ϕ)

− 2a(b+ ϕ)∇ϕ · ∇µ(ϕ) +Aκ∇4ϕ
(17)

L(ϕ) = −Aκ∇4ϕ (18)

E. Ternary Systems

Mao et al [24] have already demonstrated a working
multicomponent psuedo-spectral numerical integration
scheme, thus we will adapt their methods for our ternary
system simulation. Using their approach, the Flory-
Huggins free energy equation can be extended to an
incompressible N-component system with the addition
of extra component specific χ parameters and gradient
terms:

fb(ϕ)

kBT
=





N
∑

i=1

ϕilnϕi +
1

2

N
∑

i,j=1

χijϕiϕj +
κ

2

N
∑

i,j=1

χij∇ϕi∇ϕj





(19)
Where χii = 0, χij = χji, κ is the stiffness coefficient,
T is the absolute temperature and kB is the Boltzmann
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constant. Applying the same process of functional min-
imisation and non-dimensionalisation for the multicom-
ponent free energy equation produce the N-component
chemical potential µ:

µi = 1 + lnϕi +

N
∑

j=1

χij(1 + κ∇2)ϕj (20)

As with our previous derivations, we can substitute the
µis and ϕis into our multicomponent Cahn-Hilliard equa-
tion, neglecting the noise term θ(r⃗, t):

∂ϕi
∂t

=M∇ ·



ϕi
∑

j

(δij − ϕj)∇µj



 (21)

For this investigation’s ternary simulation we chose to
treatM and κ as constants, although it is possible to ap-
ply the same methods in the previous section to more ac-
curately replicate real world phase separation. We leave
this task for others to build upon. It is also assumed
that the M1 =M2 =M3. As we assume incompressabil-
ity i.e. 1 = ϕ1 + ϕ2 + ϕ3 we are only required to track
the phase behaviour of two components. Therefore our
non-linear Ni(ϕi) and linear Li(ϕi) components for the
pusedospectral scheme take these forms:

Ni(ϕi) = D∇ ·



ϕi
∑

j

(δij − ϕj)∇µj



+ADκ∇4ϕi

(22)

Li(ϕi) = −ADκ∇4ϕi (23)

III. COMPUTER SIMULATION RESULTS

All python simulations were conducted on the Univer-
sity of Sheffield’s high performance computing architec-
ture SHARC, using 16GB of RAM. The simulation space
was a 1D grid of size N = 512, uniform distance between
grid points ∆x = 0.5 and length L = N∆x = 256. Pe-
riodic boundary conditions were in effect. The binary
and ternary simulations with constant D = 1 and κ = 1
both had a time step of ∆t = 1. The binary simula-
tion used the Flory-Huggins free energy function. The
interaction parameters for the ternary simulation were
χ13 = χ12 = 2.7 and χ = 5. The binary simulation with
non constant D = 1 − a(ϕ + b)2 and κ = 1 had a time
step of ∆t = 0.05, due to non-negligible mass drift. Re-
sults for the binary phase diagram in fig.7 were obtained
from the average of three runs with different random ini-
tial states ϕ0, each of length 105 time steps, for increas-
ing values of χ (range 2.05-2.65, step-size=0.05). Again
D = κ = 1 and the same three initial fields were used for
each χ value. Simulation snapshots in fig.6 and fig.9 were
obtained for particular time steps increasing by log10 due

FIG. 7. The binodal for the average coexistence φ values
obtained from the CHE simulation using Flory-Huggins free
energy for a 50:50 mixture. Standard errors for φ are present.
Model fit was calculated from a 20th degree least squares
polynomial fit.

to the large time period required to observe coarsening
and growth. All random initial fields were generated us-
ing the ’random.uniform’ function in the numpy 1.22.3
library[41]. For the ϕ4 free energy function, numbers
were generated in the range -1-1 and scaled by 0.05, for
the FHT function this range was 0-1 and was not scaled.
For the ternary simulation initial fields were generated
from a homogeneous field equal to the components ini-
tial composition plus some bias field created using the
same method applied to ϕ4 field generation.

A. Method Validation

To ensure the characteristics of the Flory-Huggins free
energy equation were conserved throughout the simula-
tion, and in turn demonstrate its accuracy, we estimated
the binodal line once the simulation reached equilibrium,
the results can be found in fig.7. Through repeated ob-
servations, simulation activity decreased significantly af-
ter t = 105 for any time-step, we assume equilibrium at
this point as coarsening is negligible. The binodal’s co-
existence values were calculated from a histogram of the
final ϕ(r⃗, t) field, taking the average of the range for the
largest bin. A 20th degree least squares polynomial fit
was used to approximate the coexistence curve. There
seems to be only minute variance in coexistence values
for χ > χc, as χ → χc error increases significantly. This
anomaly is to be expected however, as it is well docu-
mented that quenches near the critical point exhibit more
complex dynamics [42]; our simulation is likely to be too
simplistic to capture this behaviour. For quenches just
above χc our CHE simulation seems to model a binary
phase system appropriately which agrees with the the-
ory. The simulation’s strength is further reinforced by
the 2D output for a quench towards the unstable (fig.6)
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and metastable regions, where the system exhibited spin-
odal decomposition as well as growth and coarsening for
the unstable quench. These results conform with work
done by others[43]. In the metastable simulation we ob-
served the expected nucleation events, although these did
not further develop via coarsening due the lack of ther-
mal noise.
To ensure appropriate behaviour when accounting for or-
der parameter dependent mobility we also took samples
from when the simulation enters the coarsening regime
and compared them to circumstance whereM = 1, these
results can be found in fig.8. Although domain growth
rate is exceptionally slow in this stage we can observe
larger and fewer domains for the case where mobility is
constant. For t = 10000 the M(ϕ) graph begins to ex-
hibit these large domains as interracial transport contin-
ues. If we increase the a parameter, we would expect
mobility to decrease further in regions of higher densities
as described in eq.16. If this is the case we would observe
a higher deviation in domain development between the
two conditions in fig.8. We will go on to describe how to
quantitatively describe these growth rates in section 3b.

FIG. 8. A comparison of density fields φ(x) for binary simula-
tions with M = 1 and M(φ). Where M(φ) coefficient a = 1

3
.

In this iteration FH free energy was used for χ = 2.5.

To verify the equilibrium condition of chemical po-

tential µ balance, for coexisting ϕ values still held for
systems where the number of components n > 2 , we
recorded µ for each component. An example plot of
µ evolution for a single component can be found in
fig.9 and a plot of all three component µs and ϕ(x, t)
fields can be found in fig.10. Depending on the cho-
sen confirmation of χ12, χ13 and χ23 and initial volume
fractions , we find a metastable 2-phase coexistence for
µA = ∂F

∂ϕA
= µB = ∂F

∂ϕB
where χlk >> χij , χij (l and k

are components that repel each other strongly) or 3-phase
coexistence for µA = ∂F

∂ϕA
= µB = ∂F

∂ϕB
= µC = ∂F

∂ϕC

where χ12 = χ13 = χ23.
The evolution of µ for ϕA in fig.9 allows us to quali-
tatively describe the systems development as it passes
through each regime, from t = 0 − 10 µ collapses from
a random distribution to slight variance around a sin-
gle value. Following this, at t = 1000 growth takes
place as heterogenous regions accumulate material, re-
sulting in minima and maxima. In the minima domains
of ϕA begin to grow via bulk diffusion as material from
the maxima is repelled by the other component domains.
For t > 1000 interfacial diffusion is dominant as smaller
droplets shrink and are consumed by larger droplets, we
see this in the figure from the flattening out of some parts
of the potential. After t > 105 large potential wells form,
these will gradually widen as coarsening continues, at this
point interfacial diffusion is minute and we can assume
that the system has reached an equilibrium. fig.9b shows
the output for a ternary simulation where χ12 = 2.7,
χ13 = 2.7 and χ23 = 5 after long time period t = 106.
As expected we see characteristic maxima and minima
for regions of a dominant phase, in this case the system
has separated into two stable phases dominated by ϕB
and ϕC (denoted by the balanced chemical potentials in
fig.9a), and a metastable phase dominated by ϕA. In a
real system this should not be the case, and instead we
should observe three stable phases for each component.
Of course, the reason for this error is due to the failure to
include thermal noise, as indicated by the chemical po-
tential plot there are regions of relative stability in which
a metastable droplet can form. This metastable droplet
only collapses if the system has significant energy to jilt
the components from this potential well. If we stick with
conditions where the quench is into the spinodal region
for a multicomponent system i.e. where χ12 = χ13 = χ23,
then this model more closely approximates real phase be-
haviour.
To ensure order parameter conservation the psuedo-
spectral schemes’ mass drift was also recorded, results
for the binary simulation can be found in fig.11 and in
fig.12 for the ternary system. For our binary simulations
time step size is significantly larger than the limit im-
posed by ∆t >> ∆x4, this ceiling can be pushed further
for ϕ4 simulations to around 5, after this value stabil-
ity decreases rapidly. For binary simulations with non-
constantM time step must be reduced by a factor of 100
to ensure stability, it is possible that this is a consequence
of additional nonlinear terms. In the case of the ternary
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FIG. 9. The extract from a 1D grid of L = 256 for the
evolution of chemical potential µ(φA) for a ternary system,
taken from a series of simulation snapshots.

FIG. 10. The extract from a 1D grid of L = 256 at t = 106

for the evolution of chemical potential µ(φ) and density field
φ(x, t) for each component of a ternary system. Where χ12 =
2.7, χ13 = 2.7 and χ23 = 5 and initial compositions φA = 0.3,
φB = 0.4 and φB = 0.3.

system, time step size can reach an order of magnitude
higher than that of the binary system and still maintain
mass conservation, unless χ values are large which results
in spontaneous instability for ∆t = 10. This is a quite
bizarre outcome, although pseudo-spectral stability does
increase for larger grid sizes this was not the case for a
2D lattice in our binary simulation runs, where step size
was still limited to around 5. We don’t have an answer
to why this occurs, but it could be a mistake in the code
itself as the methodology used in the binary and ternary

FIG. 11. The mass drift for a binary CHE simulation. Negli-
gible drift is shown for ∆t >> ∆x4.

FIG. 12. The mass drift for each density field of a Ternary
CHE simulation. Negligible drift is shown for ∆t >> ∆x4.

simulations are slightly different (see Section 2B). It may
be useful to rewrite the binary code in the ternary for-
mat and assess this issue. It is also pertinent to test
whether the inclusion of a non-constant mobility term in
the ternary code results in the same stability issues as
the binary code.

B. Droplet morphology and phase development

Once a system quenches into the spinodal region com-
positional irregularities (regions abundant with one com-
ponent) rapidly grow into domains with a characteristic
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length L. Once the system enters the coarsening regime
these domains will grow according to some exponent law
L(t) ≈ tα[44], in order to verify the accuracy of our sim-
ulation it is important to verify whether this exponent
law converges towards the growth rate α = 1

3 , as iden-
tified in the literature[42][45]. For cases where mobility
depends on the order parameter, coarsening slows sig-
nificantly, in this case previous work has identified the
growth law to be dependent on α = 1 + a (a being the
coefficient from eq.16)[45], this too should be confirmed.
It has also been demonstrated that α = 1

3 holds for mul-
ticomponent systems with static mobility, this is even
the case for nested morphologies, although the individ-
ual components of these structures violate this law[24],
the composite droplet coarsening converges on α = 1

3 . As
we did not have time to run this calculation, we will in-
stead state the methodology for others to complete. The
characteristic length can be related to the time depen-

dent structure factor S(k⃗, t), which is dependent on the
Fourier transformation of ϕ(r⃗, t) for each grid point in the

lattice so that the wave vector k⃗ takes the discrete values
2nπ
N∆x where nx and ny lie in the range −N/2 to 1−(N/2).
The structure factor is therefore defined as[45]:

S(k⃗, t) = ⟨ϕ(r⃗, t)ϕ(r⃗, t)∗⟩ (24)

The structural factor is then related to the characteristic
length in the relationship below:

L(t) =

∫

k⃗S(k⃗, t)d3k⃗
∫

k⃗|⃗k|S(k⃗, t)d3
(25)

Plotting eq.25 for the simulation’s run time allows us to
approximate the exponent growth law and determine the
parameter α.
As described by Mao et al, unique droplet packing mor-
phologies arise from the need to minimise interfacial en-
ergy across the system, labelling interfacial surface ten-
sion between phase with the parameter σij . To clarify
this point, we can provide an example of a three-phase
system (sigmaAB > σAC > σBC) with two possible
outcomes, mechanically stable (top) or unstable state
(bottom):

σAB < σAC + σBC (26)

σAB > σAC + σBC (27)

In the stable example components A, B and C do not wet
each other, quantitatively described by a finite contact
angle between phase interfaces. These conditions lead to
the formation of Janus droplets, which are described as
a cluster of multiple phases. For the unstable example
one phase wets the other two which can lead to the core
shell microstructure. Assessing these claims require us
to obtain surface tensions from simulation output for a
system at equilibrium we can integrate the density field
between two phase coexistence fractions ϕ1, ϕ2[46]:

σ = κ

∫ ϕ2

ϕ1

dn

dz
dn (28)

These calculated σ values can then be compared with
the interfacial inequalities to determine phase wetting be-
haviour.

C. Limitations of this approach

We have extensively discussed why failing to account
for thermal noise prevents this system from fully replicat-
ing dynamic behavior outside of the spinodal, it is cru-
cial to include metastable dynamics when studying mul-
ticomponent systems as these systems can contain both
metastable and unstable phases as we saw in fig.10. How-
ever, we should also contemplate other improvements to
the methodology. To start, Mao et al state that there
foray into droplet microstructure was limited due to the
restrictions imposed by the Flory-Huggins model’s lack
of free parameters to describe many phases, which limits
the number of surface tension inequalities used to de-
scribe the mechanical state of droplets. Due to this there
may be many arbitrary droplet configurations not yet ob-
served. The extensive work on wetting dynamics by Koga
and Widom may provide a suitable alternative to FHT
in this regard, they have already succeeded in deriving
density functional models for infinite order transitions in
systems of two and three components[47][48].
As our project stands, it is more suitable for explor-
ing synthetic unimolecular and polymer systems, this
is still desirable as this work may help with the devel-
opment of programmable droplets for the materials sci-
ences. However, researching biological systems will re-
quire a more sophisticated free energy with the inclusion
of extra terms to describe more complex intermolecu-
lar interactions such as hydrogen bonding as described
by Wolf[Wolf2020]. Biomolecular condensate genesis
within the cell involve may biochemical reactions as com-
ponents are broken down and reformed, Shrinivas and
Brenner include a term to account for these interactions
in their dynamical equation which changes the flux of
a component depending on a constant k[25]. They dis-
covered that an increase in biomolecular turnover rate
results in a decreased number of coexisting phases, a pos-
sible explanation as to why cells are not saturated with
separate phase structures.

IV. DISCUSSION

In this paper we designed, constructed and assessed
a pseudo-spectral python code which can be applied to
binary and multicomponent systems in order to study
phase development via growth and coarsening processes.
We also demonstrated how surface tension measurements
obtained from the simulation can be used to describe the
characteristics of certain droplet microstructures. Per-
forming these assessments for varying interfacial and in-
teraction parameters may provide the knowledge to fine
tune synthetic droplet structure development; a boon for
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pharmaceutical and materials sciences.
The code’s pseudo-spectral architecture allows for sig-

nificantly larger time increments in comparison the ex-
plicit finite difference schemes. The intended flexibility
of our work allows one to simulate conditions in which
mobility and interfacial stiffness is related to the order
parameter, to provide a more realistic model. This in-
clusion will allow for the exploration of order parame-
ter dependent interfacial stiffness on droplet morphology,
something not yet touched upon in the literature to our
knowledge. Although we were not able to explore the
codes full capabilities, we were able to verify its integrity
by demonstrating its accurate replication of phase be-
haviour for binary and ternary systems. To make up for
this lack of results We have provided guidance and direc-
tion for those who wish to continue this work. Limited
time prevented us from verifying the coarsening growth
laws observed in the literature, therefore care should be
taken to ensure this has been confirmed before results can
be obtained. The omission of thermal noise in our sim-
ulations means that coarsening behaviour of metastable
phases cannot be described accurately, but quenches into
the unstable region produce expected results and con-
form to mathematical predictions of phase coexistence
and chemical potential balance. Finally, we have also
suggested improvements to our methodology with the in-
clusion of a more sophisticated free energy to describe
wetting mechanics for systems containing many phases
transitions, and the inclusion of terms to describe com-
ponent turnover from biochemical reactions inside the
cell.
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Appendix A: Reflection

Comparing our final work to the project plan from
the 22nd of October 2021 show a significant reduction of
scope in comparison to what we finally decided to focus
on in the second semester. This initial optimistic ambi-
tion meant that I spread myself out too thin, I explored
many facets of this broad topic which would later be-
come irrelevant once we began the project proper. I also
tried to familiarize myself with theory and techniques
which would prove useless when we finally decided on a
research focus. In some sense I put the cart before the
horse and should have taken a more measured and or-
ganized approach to the information acquisition section
of the module, and properly contemplated what skills I
require to carry out this project. This should involve
scrutinizing the methodology of other work close to my
chosen topic, by finding commonalities between methods
I can come to conclusions on what is most appropriate
to learn. In failing to internalize this lesson I was forced
to play catch up at the later stages of this project which
prevented me from fully investigating the phenomenon
of interest and instead pivoting the dissertation to an
assessment of my methods. My scatter shot approach
is especially apparent in the literature review which was
more of a superficial description of many different topics.
This is not entirely my fault as the topics of liquid liq-
uid phase separation and biomolecular condensates has
generated a large body of research with many different
subtopics. Parsing all this information in such a short
time is very difficult, but I should have expressed more
criticality when considering whether references are rele-
vant. In this sense I have learnt many lessons from con-
ducting this research, especially pertaining to the limits
of my ability to assimilate large quantities of information.
There were some external problems which were beyond

my control, one issue was concentration. Reading many
papers and taking notes was a difficult task due to my
learning difficulties, these were not treated at the time,
and consequently I had great difficulty maintaining the
concentration and will to write large reports and explore
esoteric topics. Unfortunately, my supervisor had to
go on leave for the last part of this project, this was
not too much of a problem however, as Buddha’s PHD
student Biswaroop Mukherjee was a great guide on the
material, and we were able to focus this dissertation to
a simulation assessment, giving us a concrete target.
Other issues arose form my mental health, as I’ve
been experiencing family turmoil and a bereavement
leading to some days where I would struggle to get the
motivation to carry on with work. This unfortunately
meant that some aspects of the project drew out longer
than they should have, this again is especially the case
with the literature review. Despite these facts, I feel
quite accomplished in what I was able to accomplish.
Regardless of this project’s grade I have learnt many

significant lessons, and feel more confident in my ability
if I were to do this again.

Appendix B: Supplementary material

Minimisation of the free energy functional equation

The minimised functional F [ϕ(r,t)]
kBT =

∫ [

fb(ϕ) + κ(ϕ)(∇ϕ)2
]

ddr⃗ can be calculated from
the Euler-Lagrange equation (eq.B1) for a constant κ
giving us eq.B2.

δF [ϕ(r⃗, t)]

δϕ(r⃗, t)
=

F [ϕ(r⃗, t)]

δϕ
−∇ · δF [ϕ(r⃗, t)]

δ∇ϕ (B1)

µ(ϕ(r⃗, t)) =
δF [ϕ(r⃗, t)]

δϕ(r⃗, t)
=
δfb
δϕ

− 2κ∇2ϕ (B2)

For non-constant κ we use calculus of variations (COV),
starting with a small perturbation of the ϕ(r⃗, t) profile
by a minute quantity called ϵ at the vector r⃗′, where we
consider g(r⃗, r⃗′) to be a test function:

δF [ϕ(r⃗, t)]

δϕ(r⃗, t)
= lim

ϵ→0

1

ϵ
{F [ϕ+ ϵg(r⃗, r⃗′)−F [ϕ]]} (B3)

Applying COV to the the free energy and gradient term
separately in our free energy functional results in an ex-
pression for the chemical potential:

µ(ϕ) =
δF
δϕ

=
∂fb
∂ϕ

− (∇ϕ)2 dκ(ϕ)
dϕ

− 2κ(ϕ)∇2ϕ (B4)

Substituting both derived chemical potentials into our
Cahn-Hilliard equation. gives us an expression for both
constant (eq.B5) and non constant (eq.B6) κ:

δϕ(r⃗, t)

δt
= ∇ ·

[

M(ϕ)∇
(

δfb
δϕ

− 2κ∇2ϕ

)]

(B5)

∂ϕ(r⃗, t)

∂t
=M(ϕ)∇2

[

∂fb
∂ϕ

− (∇ϕ)2 dκ(ϕ)
dϕ

− 2κ(ϕ)∇2ϕ

]

+∇M(ϕ) · ∇
[

∂fb
∂ϕ

− (∇ϕ)2 dκ(ϕ)
dϕ

− 2κ(ϕ)∇2ϕ

]

Github link

All python code can be found in the follow-
ing location: https://github.com/BazzahN/
pseudo-spectral-meth-of-CHE-


