Automated extreme value threshold selection and uncertainty for induced seismicity

Conor Murphy Jonathan Tawn, Zak Varty, Peter Atkinson, Ross Towe Lancaster University, Shell

Motivation

- Production of oil/gas can cause earthquakes.
- Low magnitude events at shallow depths.
- Similar characteristics at CO₂ storage sites.

Challenges

- Partial censoring due to development of geophone network.
- Network too sparse/insensitive to detect low magnitude events.

⇒ Improved forecasting of seismic hazards under future extraction scenarios...

Threshold modelling

For X > u, the distribution of Y = X - u converges to the generalised Pareto distribution (GPD) as $u \to x^F$.

In practice, once u is chosen, the excesses Y are modelled by a GPD(σ_u, ξ) with:

$$H(y) = \begin{cases} 1 - \left(1 + \frac{\xi y}{\sigma_u}\right)^{-1/\xi}, & \xi \neq 0, \\ 1 - \exp\left(-\frac{y}{\sigma_u}\right), & \xi = 0, \end{cases}$$

with y>0, $w_+=\max(w,0)$, $\xi\in\mathbb{R}$ and $\sigma_u>0$.

- End-goal: Return level estimation.
- First challenge: Threshold selection!

Threshold stability property:

If excesses of u are $GPD(\sigma_u, \xi)$, then excesses of v > u are also $GPD(\sigma_v, \xi)$ with $\sigma_v = \sigma_u + \xi(v - u)$.

Constant threshold selection

Why is threshold selection important?

- Parameter estimates
- Quantiles/Return levels
- Uncertainty

Often chosen by rule of thumb or subjective methods!

Challenge:

⇒ Bias-variance trade-off

Expected Quantile Discrepancy (EQD)

- Input: Data, Set of candidate thresholds.
- Method: Expected deviation between model and sample quantiles.
- Output: EQD value for each candidate.

$$d_{(b)} = \frac{1}{m} \sum_{i=1}^{m} |M_{(b)}(p_j) - Q_{(b)}(p_j, \mathbf{x}_{(b)})| \qquad EQD = \frac{1}{k} \sum_{b=1}^{k} d_{(b)}.$$

$$EQD = \frac{1}{k} \sum_{b=1}^{k} d_{(b)}$$

Automated methods

- Wadsworth (2016) utilises the asymptotic joint distribution of MLEs:
 - Consider $\hat{\xi}_i^* = \frac{\hat{\xi}_i \hat{\xi}_{i+1}}{\nu_i}$ the standardised increments.
 - Main result: $(\hat{\xi}_1^*, \dots, \hat{\xi}_{k-1}^*)^T \to \mathbf{Z}$ where $\mathbf{Z} \sim N_{k-1}(\mathbf{0}, \mathbf{1}_{k-1})$ above u^* .
 - Changepoint model and likelihood ratio test.
- Northrop et al. (2017) use leave-one-out cross-validation in a Bayesian framework:
 - Assess predictive ability using candidate u at v > u.
 - Average inferences over posterior distribution of parameters.
 - Maximise measure of predictive performance.

Simulation study

Examples of simulated datasets:

	Our method	Wadsworth*	Northrop
Case 1	5.3	41.3	52.7
Case 2	5.5	43.9	54.5
Case 3	7.2	13.7	42.7
Case 4	10.2	38.5	48.9

-> Our method achieves RMSEs between 1.90 and 7.98 times smaller than the Wadsworth (2016) method, always with lower variance and in 3 out of 4 cases, is the least biased.

Tables have been scaled by a factor of 100

^{*}Results for Wadsworth are calculated only on the samples where a threshold was estimated. The nethod failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.

Quantile estimation

р	Our method	Wadsworth*	Northrop	Our method	Wadsworth*	Northrop
	Case 1			Case 2		
1/n	5.8	6.1	7.4	6.2	6.2	7.4
1/10n	13.3	14.7	20.8	15.3	15.8	26.4
1/100 <i>n</i>	26.2	28.9	52.9	32.2	33.9	93.6
	Case 3			Case 4		
1/n	2.0	2.0	2.5	7.0	7.7	8.5
1/10n	3.3	3.4	4.8	16.5	19.4	26.6
1/100 <i>n</i>	4.9	5.0	8.2	33.3	40.1	84.9

-> Our method achieves smallest RMSEs in all cases again!

Tables have been scaled by a factor of 10

^{*}Results for Wadsworth are calculated only on the samples where a threshold was estimated. The method failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.

Uncertainty

- Reliance on point estimates can be dangerous.
- Threshold uncertainty often omitted!
- Double-bootstrap procedure to incorporate different uncertainties.

What we have so far

- Working method for constant threshold selection.
- Dataset with missing observations.
- Varty et al. (2021) incorporated time-varying data quality into threshold.

 \Rightarrow What now?

Covariate inclusion

- Missed observations caused by geophone network.
- · Spatial variability also present.
- Earthquake needs to be detected by three or more geophones.
- · Can we use this as covariate?
- $V_{\text{geo}}(x, t)$ = distance to third-nearest geophone.

Spatio-temporal threshold

Model given by:

$$u(x,t) = \theta V_{geo}(x,t)$$

$$Y - u(x,t)|Y > u(x,t) \sim GPD(\sigma_0 + \xi u(x,t), \xi)$$

- Covariate known for each seismic event.
- Given $V_{geo}(x, t)$, can estimate θ using same method.

Assumption: (σ_0, ξ) are constant!

Further work

Spatio-temporal modelling

- Assess variability in (σ_0, ξ) with spatio-temporal threshold.
- Utilise other relevant covariates for GPD model.
- Explore more complex relationships between u(x, t) and $V_{geo}(x, t)$.

Combined threshold & model selection

- 1. Adjust threshold selection method for all desired GPD parameterisations.
- 2. Transform to common margins and record min(EQD).
- Select model which minimises min(EQD) values.

Thanks for listening!

Exploratory Analysis

Should the parameters (σ_0, ξ) vary spatially?

Thresholds	Models	$GPD(\sigma,\xi)$	$GPD(\sigma_R,\xi)$	
u = 1.07	$GPD(\sigma_R, \xi)$ 0.000		NA	
	$GPD(\sigma_R, \xi_R)$	0.000	0.036↑	
u = 1.318	$GPD(\sigma_R, \xi)$	0.158	NA	
	$GPD(\sigma_R, \xi_R)$	0.357	0.797	
$(u_U, u_L) = (1.2, 0.876)$	$GPD(\sigma_R, \xi)$	0.001	NA	
	$GPD(\sigma_R, \xi_R)$	0.001	0.064↑	

⇒ Evidence to suggest GPD scale parameter varies over region.

Next steps:

- Compare above models using appropriate thresholds for all cases... How?

Simulation Study

Simulated from two distributions:

$$\begin{split} F_1(x) &= \begin{cases} \frac{x-0.5}{3}, & 0.5 \leq x \leq 1 \\ \frac{1}{6} + \frac{5}{6} \left[H(x-1;0.5,0.1) \right], & x > 1. \end{cases} \\ F_2(x) &= \begin{cases} \int_0^x h(x;0.5,0.1) \mathbb{P}(B < x) \mathrm{d}x, & 0 \leq x \leq 1 \\ q + (1-q) \left[H(x-1;0.5,0.1) \right], & x > 1. \end{cases} \end{split}$$

where $q = \int_0^1 h(x; 0.5, 0.1) \mathbb{P}(B < x) dx$.

True quantiles from the simulated distributions can be calculated as follows:

$$x_p = 1 + \frac{\sigma_1}{\xi} \left[\left(\frac{6p}{5} \right)^{-\xi} - 1 \right], \qquad y_p = 1 + \frac{\sigma_1}{\xi} \left[\left(\frac{p}{1-q} \right)^{-\xi} - 1 \right].$$

Simulation study

Breakdown of RMSE:

- Bias and variance of threshold choice for GPD data.

	Our method			Varty method		
n	RMSE	Bias	Variance	RMSE	Bias	Variance
1000	9.4	4.7	0.7	10.7	5.0	0.9
10000	13.2	3.5	1.6	13.3	3.8	1.6
40000	5.8	2.7	0.2	8.1	3.3	0.5

- Bias and variance of quantile estimation for Gaussian data.

	Our method			Varty method		
n	RMSE	Bias	Variance	RMSE	Bias	Variance
1000	72.8	62.6	13.9	79.3	70.3	13.5
10000	38.0	25.2	8.1	42.0	30.5	8.3
40000	23.6	16.6	2.8	24.8	18.1	2.9

	(Our method		Wadsworth*			Northrop		
	RMSE	Bias	Variance	RMSE	Bias	Variance	RMSE	Bias	Variance
Case 1	5.3	3.4	0.2	41.3	15.1	14.8	52.7	25.7	21.1
Case 2	5.5	3.0	0.2	43.9	18.8	15.8	54.5	26.9	22.5
Case 3	7.2	4.6	0.3	13.7	3.9	1.7	42.7	22.9	12.9
Case 4	10.2	6.8	0.6	38.5	7.2	14.3	48.9	15.0	21.7

-> Our method achieves RMSEs between 1.9 and 8 times smaller than the Wadsworth (2016) method, always with lower variance and in 3 out of 4 cases, is the least biased.

Tables have been scaled by a factor of 100

^{*}Results for Wadsworth are calculated only on the samples where a threshold was estimated. The nethod failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.

Comparison in cases where Wadsworth (2016) broke down:

- Small sample of 120
- Same number of thresholds

- Case 3A: $\xi = -0.2$
- Case 3B: $\xi = -0.3$
- -> Our method achieves accurate results in all cases!

Gaussian data

Gaussian Case							
p Our method Wadsworth* Northrop							
1/n	2.1	2.5	2.3				
1/10n	4.3	5.4	4.6				
1/100n	7.0	9.0	7.7				

Tables have been scaled by a factor of 10

^{*}Results for Wadsworth are calculated only on the samples where a threshold was estimated. In this se, the method failed to obtain an estimate for 0.4% of the samples.

Further work

Compare against other existing methods in fixed threshold selection.

Danielsson et al. (2019):

- Quantile-driven approach.
- Maximum distance between empirical and model quantiles.

Applied to River Nidd dataset:

$$\Rightarrow u = 189.02.$$

References

- Danielsson, J., Ergun, L., de Haan, L., and de Vries, C. G. (2019). Tail Index Estimation: Quantile-Driven Threshold Selection. Staff Working Papers 19-28, Bank of Canada.
- Northrop, P. J., Attalides, N., and Jonathan, P. (2017). Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 66(1):93–120.
- Varty, Z., Tawn, J. A., Atkinson, P. M., and Bierman, S. (2021). Inference for extreme earthquake magnitudes accounting for a time-varying measurement process. *arXiv preprint arXiv:2102.00884*.
- Wadsworth, J. L. (2016). Exploiting structure of maximum likelihood estimators for extreme value threshold selection. *Technometrics*, 58(1):116–126.