Spatio-temporal Threshold Selection for Induced Seisimicity

 $\overline{1}$ Conor Murphy¹ $\overline{1}$ c.murphy4@lancaster.ac.uk $\overline{1}$ https://tinyurl.com/cmurphy4

1. Motivation

Context

- Production of oil and gas can cause (shallow, low magnitude) earthquakes ⇒ substantial damage. Example: Groningen gas field in the Netherlands.
- Potential impact of rare high levels of seismicity \Rightarrow careful modelling of the earthquake magnitudes needed \Rightarrow forecast hazards under future extraction scenarios.

Challenge: Partially censored data.

Cause: Geophone recording network too sparse and insensitive to detect all low magnitude events. Fewer low magnitude events censored at later times (shown in plot below).

Aim: Use spatial information to further improve the modelling of low magnitude, but potentially high impact, seismic events.

Result: Novel threshold selection technique useful for extreme value contexts.

- **Physical models** suggest magnitudes are approximately exponential (Exp).
- **Extreme Value Theory** provides the generalised Pareto distribution (GPD) to model excesses of a suitably high threshold u the Exp distribution is a special case ($\xi = 0$).
- For induced seismicity, physical arguments justify the assumption that magnitudes are i.i.d. and that partial censoring is the sole reason for deviation from this assumption.

- Estimated a time-varying threshold above u such that observed data \sim GPD.
- Method: Bootstrap samples of excesses of each threshold choice.
	- Transform magnitudes under fitted GPD onto shared Exp(1) margins.
	- Compare mean-absolute distances of empirical and true quantiles.
- The threshold which minimises this overall distance is selected.

Method directly tackles bias-variance trade-off: we want to select a threshold as low as possible (to minimise variance) while also achieving a good fit of the GPD (minimising bias).

Mean distances d are calculated over k replications from the following formula with y denoting original/transformed empirical quantiles at m equally-spaced probabilities for GPD/Exp measure:

with $Q_{\vec{i}}(\rho)=\frac{\hat{\sigma}_{\vec{i}}}{\hat{\xi}_{\vec{i}}}$

Developed methods based on Varty et al. (2021) (https://tinyurl.com/varty21): **1 Exp measure**: transforms the magnitudes onto standard Exp margins and compares against Exp quantiles with rate 1.

2 GPD measure: compares quantiles of the sampled excesses of a threshold against GPD quantiles calculated using maximum likelihood estimates for (σ, ξ) of GPD.

GPD measure performs better than Exp measure in threshold selection for all sample sizes. RMSE of quantile estimates decreases for both methods as the sample size increases. **Current research**: Compare against existing methods for extreme value threshold selection.

Figure 1: Groningen magnitudes over time with solid line indicating a smoothed estimate for the mean.

2. Method

Background

Figure 2: Return level plot showing different cases of GPD.

Previous work

3. Constant Threshold Selection

- Construct a function $u(x, t)$ showing how earthquake detection probability changes over space and time.
- This will give a physical basis for the form of the space-time-varying threshold.

Further Research

$$
d = \frac{1}{k} \sum_{i=1}^{k} d_i
$$
, where $d_i = \frac{1}{m} \sum_{j=1}^{m} |y_j - Q_i(p_j)|$,

 $\left[(1-p)^{-\hat{\xi}_i}-1\right]$ for GPD measure and $Q_i(p)=-\log(1-p)$ for Exp measure.

Standardised Measure

−0.5 − −0.3 − −0.1 0.1 Difference in Absolute Error Error Absolute \equiv ence Differ
0.5

4. I.I.D. Case Studies

• Known threshold: Simulated GPD data with true threshold $u = 1.0$. \Rightarrow Compare difference in absolute error from the true threshold (see left plot below).

2 Unknown threshold: Simulated Gaussian data where true threshold does not exist. ⇒ Compare RMSEs of fitted quantiles for estimated threshold choices (see right plot below).

- Incorporate a probability distribution into the censoring process.
- Account for varying sensitivity of geophones in the network: using measurement error data.
- Coulomb stress.
- Implement improved modelling approaches to inform seismicity forecasting under future extraction strategies to reduce the chance of high impact events occurring.

STOR-TLancaster

5. Spatial Threshold Selection

- Challenge: Spatial variation in the threshold above which earthquakes are detected. Cause: Density of geophone network varies spatially.
- Earthquakes must be detected by three geophones \Rightarrow Link between earthquake detection probability and its distance from the three nearest geophones.

Approach:

- \bullet $V(x)$ measures squared distance of an earthquake location x from all geophones and records the third smallest.
- $V(x)$ scaled by a factor θ such that the censoring threshold (red line) $u(x) = \theta V(x)$, where θ represents the geophone sensitivity.
- Above threshold selection technique adjusted to estimate θ given the value of $V(x)$ and the magnitude at each observed location.

Figure 4: Earthquake/geophone locations simulated uniformly at random across region (0,10); magnitudes generated from a GPD.

6. Spatio-temporal Threshold Selection

Snapshots from 2013 [Top] and 2015 [Bottom] of $V(x)$ surface across gas field with points representing geophones.

Approach:

• Allow parameters of GPD to vary spatially according to a spatial covariate, e.g., incremental

