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Background

• Number of methods for
extreme value inference

• Block maxima, peaks over
threshold, mixture models

• Focus on POT

Challenge:
• Selection of appropriate

threshold
• Bias-variance trade-off
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Threshold modelling

Suppose, X1, . . . ,Xn is a sequence of iid random variables, with common
distribution function F.

For X > u, the distribution of Y = X − u converges to the generalised Pareto
distribution (GPD) as u → xF .

In practice, a suitably high threshold u is chosen, and the excesses Y are
modelled by a GPD(σu, ξ) with distribution function

H(y) =

1−
(
1+ ξy

σu

)−1/ξ

+
, ξ ̸= 0,

1− exp
(
− y

σu

)
, ξ = 0,

(1)

with y > 0, w+ = max(w,0), shape parameter ξ ∈ R and the
threshold-dependent scale parameter σu > 0.

Note: if excesses of u are GPD(σu, ξ), then excesses of v > u are also GPD(σv, ξ)
with σv = σu + ξ(v − u).
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Threshold modelling

• For ξ < 0, the distribution of X has a finite upper end-point at u− σu/ξ.
• The distribution is unbounded above for ξ ≥ 0.
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Threshold selection

The most fundamental part of a threshold-based model!

Standard methods:

• MRL plots
• Rule of thumb methods
• Parameter stability plots (most widely used!)
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Motivating example

River Nidd dataset:

• The River Nidd is a tributary in North Yorkshire.
• 154 observations of river flow above a threshold of 65 m3/s.
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-> Clearly automated methods are needed!
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Automated methods

• Wadsworth (2016) utilises the asymptotic joint distribution of MLEs:
- Main result: (ξ̂∗1 , . . . , ξ̂

∗
k−1)

T → Z where Z ∼ Nk−1(0, 1k−1).
- Simple changepoint model.
- Likelihood ratio test if ξ̂∗i ∼ N(β, γ).

• Northrop et al. (2017) use leave-one-out cross-validation in a Bayesian
framework:

- Compare predictive ability.
- Average inferences over posterior distribution of parameters.
- Importance sampling.
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Work of Varty et al. (2021)

Motivation:
• Production of oil/gas can

cause earthquakes
• Largest 3.6 ML but shallow
• Substantial damage

Challenge:
• Partial censoring due to

development of geophone
network

• Network too sparse/insensitive
to detect low magnitude events
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Our method

• Compares the deviation from the line of equality on a QQ-plot across
replications for each threshold.

• Result: A set of metric values corresponding to each proposed threshold.
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Simulation study

Examples of simulated datasets:
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Results

Our method Wadsworth* Northrop
Case RMSE Bias Variance RMSE Bias Variance RMSE Bias Variance
Case 1 5.3 3.4 0.2 41.3 15.1 14.8 52.7 25.7 21.1
Case 2 5.5 3.0 0.2 43.9 18.8 15.8 54.5 26.9 22.5
Case 3 7.2 4.6 0.3 13.7 3.9 1.7 42.7 22.9 12.9
Case 4 10.2 6.8 0.6 38.5 7.2 14.3 48.9 15.0 21.7

-> Our method achieves RMSEs between 1.9 and 8 times smaller than the
Wadsworth (2016) method, always with lower variance and in 3 out of 4
cases, is the least biased.

Tables have been scaled by a factor of 100
*Results for Wadsworth are calculated only on the samples where a threshold was estimated. The

method failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.
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Quantile estimation

True quantiles from the simulated distributions can be calculated as follows:

xp = 1+ σ1

ξ

[(
6p
5

)−ξ

− 1

]
yp = 1+ σ1

ξ

[(
p

1− q

)−ξ

− 1

]

p Our method Wadsworth* Northrop Our method Wadsworth* Northrop
Case 1 Case 2

1/n 5.8 6.1 7.4 6.2 6.2 7.4
1/10n 13.3 14.7 20.8 15.3 15.8 26.4
1/100n 26.2 28.9 52.9 32.2 33.9 93.6

Case 3 Case 4
1/n 2.0 2.0 2.5 7.0 7.7 8.5

1/10n 3.3 3.4 4.8 16.5 19.4 26.6
1/100n 4.9 5.0 8.2 33.3 40.1 84.9

Tables have been scaled by a factor of 10
*Results for Wadsworth are calculated only on the samples where a threshold was estimated.The

method failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.
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Gaussian data

Gaussian Case
p Our method Wadsworth* Northrop
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Tables have been scaled by a factor of 10

*Results for Wadsworth are calculated only on the samples where a threshold was estimated. In this
case, the method failed to obtain an estimate for 0.4% of the samples.
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River Nidd
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Uncertainty

• Sensitivity to proposed set of
thresholds.

• Low threshold uncertainty for our
method.

Further work:
- Comparison between methods.
- Include other methods.
- Extensions of method.

Threshold uncertainty
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Thanks for listening!
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Developments from parameter stability plots

• Northrop and Coleman (2014) developed a multiple-threshold GPD model ->
likelihood ratio and score tests to assess stability.
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-> Clearly automated methods are needed!
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Simulation Study

Simulated from two distributions:

F1(x) =

{
x−0.5

3 , 0.5 ≤ x ≤ 1
1
6 + 5

6 [H(x − 1;0.5,0.1)] , x > 1.

F2(x) =

{∫ x
0 h(x;0.5,0.1)P(B < x)dx, 0 ≤ x ≤ 1

q+ (1− q) [H(x − 1;0.5,0.1)] , x > 1.

where q =
∫ 1
0 h(x;0.5,0.1)P(B < x)dx.
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Simulation study

Breakdown of RMSE:

- Bias and variance of threshold choice for GPD data.

Our method Varty method
n RMSE Bias Variance RMSE Bias Variance

1000 9.4 4.7 0.7 10.7 5.0 0.9
10000 13.2 3.5 1.6 13.3 3.8 1.6
40000 5.8 2.7 0.2 8.1 3.3 0.5

- Bias and variance of quantile estimation for Gaussian data.

Our method Varty method
n RMSE Bias Variance RMSE Bias Variance

1000 72.8 62.6 13.9 79.3 70.3 13.5
10000 38.0 25.2 8.1 42.0 30.5 8.3
40000 23.6 16.6 2.8 24.8 18.1 2.9

Table values have been scaled by a factor of 100
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Results

Comparison in cases where Wadsworth (2016) broke down:
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• Small sample of 120
• Same number of thresholds

• Case 3A: ξ = −0.2
• Case 3B: ξ = −0.3

-> Our method achieves accurate results in all cases!
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