Novel threshold selection for univariate extremes

Conor Murphy Jonathan Tawn, Zak Varty

Lancaster University, Shell

- Number of methods for extreme value inference
- Block maxima, peaks over threshold, mixture models
- Focus on POT

Challenge:

- Selection of appropriate threshold
- Bias-variance trade-off

Suppose, X_1, \ldots, X_n is a sequence of iid random variables, with common distribution function *F*.

For X > u, the distribution of Y = X - u converges to the generalised Pareto distribution (GPD) as $u \to x^{F}$.

In practice, a suitably high threshold u is chosen, and the excesses Y are modelled by a GPD(σ_u, ξ) with distribution function

$$H(y) = \begin{cases} 1 - \left(1 + \frac{\xi y}{\sigma_u}\right)_+^{-1/\xi}, & \xi \neq 0, \\ 1 - \exp\left(-\frac{y}{\sigma_u}\right), & \xi = 0, \end{cases}$$
(1)

with y > 0, $w_+ = \max(w, 0)$, shape parameter $\xi \in \mathbb{R}$ and the threshold-dependent scale parameter $\sigma_u > 0$.

Note: if excesses of *u* are GPD(σ_u , ξ), then excesses of v > u are also GPD(σ_v , ξ) with $\sigma_v = \sigma_u + \xi(v - u)$.

Threshold modelling

- For $\xi < 0$, the distribution of X has a finite upper end-point at $u \sigma_u / \xi$.
- The distribution is unbounded above for $\xi \ge 0$.

The most fundamental part of a threshold-based model! **Standard methods:**

- MRL plots
- Rule of thumb methods
- Parameter stability plots (most widely used!)

River Nidd dataset:

- The River Nidd is a tributary in North Yorkshire.
- 154 observations of river flow above a threshold of 65 m³/s.

-> Clearly automated methods are needed!

- Wadsworth (2016) utilises the asymptotic joint distribution of MLEs:
 - Main result: $(\hat{\xi}_1^*, \dots, \hat{\xi}_{k-1}^*)^T \to \mathbf{Z}$ where $\mathbf{Z} \sim N_{k-1}(\mathbf{0}, \mathbf{1}_{k-1})$.
 - Simple changepoint model.
 - Likelihood ratio test if $\hat{\xi}_i^* \sim N(\beta, \gamma)$.
- Northrop et al. (2017) use leave-one-out cross-validation in a Bayesian framework:
 - Compare predictive ability.
 - Average inferences over posterior distribution of parameters.
 - Importance sampling.

Motivation:

- Production of oil/gas can cause earthquakes
- Largest 3.6 *M_L* but shallow
- Substantial damage

Challenge:

- Partial censoring due to development of geophone network
- Network too sparse/insensitive to detect low magnitude events

Our method

- Compares the deviation from the line of equality on a QQ-plot across replications for each threshold.
- Result: A set of metric values corresponding to each proposed threshold.

Examples of simulated datasets:

	Our method		Wadsworth*			Northrop			
Case	RMSE	Bias	Variance	RMSE	Bias	Variance	RMSE	Bias	Variance
Case 1	5.3	3.4	0.2	41.3	15.1	14.8	52.7	25.7	21.1
Case 2	5.5	3.0	0.2	43.9	18.8	15.8	54.5	26.9	22.5
Case 3	7.2	4.6	0.3	13.7	3.9	1.7	42.7	22.9	12.9
Case 4	10.2	6.8	0.6	38.5	7.2	14.3	48.9	15.0	21.7

-> Our method achieves RMSEs between 1.9 and 8 times smaller than the Wadsworth (2016) method, always with lower variance and in 3 out of 4 cases, is the least biased.

Tables have been scaled by a factor of 100

*Results for Wadsworth are calculated only on the samples where a threshold was estimated. The nethod failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.

True quantiles from the simulated distributions can be calculated as follows:

$$x_{\rho} = 1 + \frac{\sigma_1}{\xi} \left[\left(\frac{6p}{5} \right)^{-\xi} - 1 \right] \qquad y_{\rho} = 1 + \frac{\sigma_1}{\xi} \left[\left(\frac{p}{1-q} \right)^{-\xi} - 1 \right]$$

р	Our method	Wadsworth*	Northrop	Our method	Wadsworth*	Northrop	
		Case 1		Case 2			
1/n	5.8	6.1	7.4	6.2	6.2	7.4	
1/10n	13.3	14.7	20.8	15.3	15.8	26.4	
1/100 <i>n</i>	26.2	28.9	52.9	32.2	33.9	93.6	
		Case 3		Case 4			
1/n	2.0	2.0	2.5	7.0	7.7	8.5	
1/10n	3.3	3.4	4.8	16.5	19.4	26.6	
1/100 <i>n</i>	4.9	5.0	8.2	33.3	40.1	84.9	

Tables have been scaled by a factor of 10

*Results for Wadsworth are calculated only on the samples where a threshold was estimated. The method failed to estimate a threshold for 2%, 28%, 0.2%, 4% of the simulated datasets in Cases 1-4.

Gaussian Case								
p Our method Wadsworth [*] Northrop								
1/n	2.1	2.5	2.3					
1/10n	4.3	5.4	4.6					
1/100 <i>n</i>	7.0	9.0	7.7					

Tables have been scaled by a factor of 10

*Results for Wadsworth are calculated only on the samples where a threshold was estimated. In this case, the method failed to obtain an estimate for 0.4% of the samples.

© Conor Murphy , Jonathan Tawn, Zak Varty

© Conor Murphy , Jonathan Tawn, Zak Varty

Uncertainty

- Sensitivity to proposed set of thresholds.
- Low threshold uncertainty for our method.

Further work:

- Comparison between methods.
- Include other methods.
- Extensions of method.

Threshold uncertainty

Thanks for listening!

Developments from parameter stability plots

 Northrop and Coleman (2014) developed a multiple-threshold GPD model -> likelihood ratio and score tests to assess stability.

-> Clearly automated methods are needed!

Simulated from two distributions:

$$F_{1}(x) = \begin{cases} \frac{x-0.5}{3}, & 0.5 \le x \le 1\\ \frac{1}{6} + \frac{5}{6} \left[H(x-1; 0.5, 0.1) \right], & x > 1. \end{cases}$$

$$F_{2}(x) = \begin{cases} \int_{0}^{x} h(x; 0.5, 0.1) \mathbb{P}(B < x) dx, & 0 \le x \le 1\\ q + (1-q) \left[H(x-1; 0.5, 0.1) \right], & x > 1. \end{cases}$$

where $q = \int_0^1 h(x; 0.5, 0.1) \mathbb{P}(B < x) dx$.

Simulation study

Breakdown of RMSE:

- Bias and variance of threshold choice for GPD data.

	(Our met	hod	Varty method		
n	RMSE	Bias	Variance	RMSE	Bias	Variance
1000	9.4	4.7	0.7	10.7	5.0	0.9
10000	13.2	3.5	1.6	13.3	3.8	1.6
40000	5.8	2.7	0.2	8.1	3.3	0.5

- Bias and variance of quantile estimation for Gaussian data.

	(Our met	hod	Varty method		
n	RMSE	Bias	Variance	RMSE	Bias	Variance
1000	72.8	62.6	13.9	79.3	70.3	13.5
10000	38.0	25.2	8.1	42.0	30.5	8.3
40000	23.6	16.6	2.8	24.8	18.1	2.9

Table values have been scaled by a factor of 100

Comparison in cases where Wadsworth (2016) broke down:

- Small sample of 120
- Same number of thresholds

- Case 3A: $\xi = -0.2$
- Case 3B: ξ = −0.3
- -> Our method achieves accurate results in all cases!

- Northrop, P. J., Attalides, N., and Jonathan, P. (2017). Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 66(1):93–120.
- Northrop, P. J. and Coleman, C. L. (2014). Improved threshold diagnostic plots for extreme value analyses. *Extremes*, 17(2):289–303.
- Varty, Z., Tawn, J. A., Atkinson, P. M., and Bierman, S. (2021). Inference for extreme earthquake magnitudes accounting for a time-varying measurement process. *arXiv preprint arXiv:2102.00884*.
- Wadsworth, J. L. (2016). Exploiting structure of maximum likelihood estimators for extreme value threshold selection. *Technometrics*, 58(1):116–126.