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Abstract—From the dawn of the digital revolution until today,
data has grown exponentially, especially in images and videos.
Smartphones and wearable devices with high storage and long
battery life contribute to continuous recording and massive
uploads to social media. This rapid increase in visual data,
combined with users’ limited time, demands methods to produce
shorter videos that convey the same information. Semantic Fast-
Forwarding reduces viewing time by adaptively accelerating
videos and slowing down for relevant segments. However, current
methods require predefined visual concepts or user supervision,
which is costly and time-consuming. This work explores using
textual data to create text-driven fast-forwarding methods that
generate semantically meaningful videos without explicit user
input. Our proposed approaches outperform baselines, achieving
F1 Score improvements up to 12.8 percentage points over the
best competitors. Comprehensive user and ablation studies,
along with quantitative and qualitative evaluations, confirm
their superiority. Visual results are available at https://youtu.be/-
cOYqumJQOY and https://youtu.be/u6ODTv7-9C4.

I. INTRODUCTION

New digital technologies like smartphones and social multi-
media services have made storing and sharing data effortless,
leading to a significant rise in data, particularly textual and
visual data. Videos have become a crucial medium for people
to document their lives and engage socially online. However,
lengthy web videos often require fast-forwarding through
segments, yet we can still fully understand them. Therefore,
techniques must be developed to identify relevant content and
reduce the time spent watching long untrimmed videos.

Research on Video Fast-Forwarding and Hyperlapse meth-
ods [1]–[6] focuses on creating a continuous flow of the
video timeline by selecting frames based on camera stability
and desired output length. Recent approaches [7]–[18], known
as Semantic Fast-Forwarding (SFF) or Semantic Hyperlapse,
adaptively sample frames based on semantic content, usually
splitting the video temporally and using different speed-up
rates for each split. The final result is a visually smooth
accelerated video with lower playback rates emphasizing the
most relevant temporal segments.

The main challenge for Semantic Fast-Forwarding ap-
proaches is defining what is relevant to the watcher. Cur-
rent methods either use predefined visual concepts [19] or
leverage user-defined semantic labels. Despite their remarkable

1This work relates to a PhD thesis.

progress, these methods are limited by a small set of concepts
like CARS and TREES or require user-driven supervision.

To tackle these problems, we resort to natural language
expressed in texts. In their richest form, texts can be found
in pairs with images and videos. For instance, many visual
publications on the Internet (e.g., recipe websites and Insta-
gram posts) are often accompanied by text descriptions such as
titles, comments, and captions [20]. The overwhelming amount
of textual data allows us to leverage visual semantic concepts
from text-centric data and create powerful models to solve the
Semantic Fast-Forwarding task. Furthermore, it also enables
creating methods that fully abdicate direct user supervision.

We argue that natural language expressed in texts carries
a latent supervision signal relevant to identifying the visual
semantics in video scenes. Hence, we can use text documents
from the Internet to determine what is relevant in a video.

Based on these assumptions, in this work, we aim at creating
fully automatic text-driven video fast-forwarding techniques
capable of using input texts as proxies to identify the most
useful video segments. These techniques should correlate the
input text with the frames in the original video to infer the
most relevant frames to the watcher while dropping the less
relevant ones to reduce the video to a target length.

We conducted experiments in two contexts: i) Fast-
Forwarding First-Person Videos Using Social Network Data
and; ii) Fast-Forwarding Instructional Videos Using Textual
Instructions. In the first approach, we observe that social
networks have become an underlying channel for people to
interact and express their feelings and opinions. Therefore,
personal texts published in such media may contain important
cues to infer topics of interest and determine the relevant
frames. In the second context, we consider the plethora of on-
line textual tutorials and instructional videos teaching various
tasks. Textual instructions are more concise than instructional
videos, even though they express the same content. In this
regard, textual instructions contain the supervision signal to
point out the relevant parts of the video.
Contributions. We can summarize our contributions as: i)
a novel approach that personalizes a hyperlapse video em-
phasizing relevant segments according to the user’s topic of
interest; ii) a novel approach based on a reinforcement learning
formulation to accelerate instructional videos according to
clip similarity scores with textual instructions; iii) a model
for encoding user and video frames semantics, capable of
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leveraging raw visual concepts to topics of interest; iv) a new
Visually-guided Document Attention Network (VDAN) capa-
ble of generating a highly discriminative embedding space for
textual and visual data; v) a reinforcement learning agent that
can navigate through videos, adjusting the playback rate based
on the semantic load; and vi) comprehensive experiments,
including ablation and user studies, as well as quantitative and
qualitative results.

II. RELATED WORK

A. Video Summarization

In the past several years, video summarization methods
were the main approaches for creating visual summaries.
Regarding the usage of human annotations, we can broadly
divide them into unsupervised, supervised, and weakly su-
pervised methods. Unsupervised methods [21], [22] typically
use hand-crafted features or leverage low-level cues (e.g.,
diversity and representativeness) to identify relevant frames or
segments. Supervised methods [23]–[25] rely on human super-
vision to generate content aligned with human understanding.
However, they require human-created summary pairs or fine-
grained relevance annotations, which are expensive and time-
consuming [26], [27]. Closer to our work, weakly-supervised
methods attempt to overcome the difficulty of labeling the
frames with relevance scores by collecting information from
other sources. They resort to video-level annotations [27],
existing summaries (e.g., sports highlights and movie trail-
ers) [26], or auxiliary tasks like moment localization [28].
Despite their success, most summarization methods either
ignore temporal aspects or use a relaxed temporal restriction,
resulting in visual gaps and breaking the video context.

B. Semantic Fast-Forwarding

In Semantic Fast-Forwarding, the goal is to create a shorter
version of the input video that emphasizes relevant content
while preserving temporal continuity [7], [8], [29]. Methods
for first-person videos, where the camera is constantly moving,
must align selected frames to produce a visually pleasing
result [9]–[14]; these are commonly referred to as Semantic
Hyperlapse. Semantic Fast-Forwarding/Hyperlapse methods
roughly fall into two groups: those using predefined semantic
concepts as supervision and those using user supervision either
before or at runtime.

Approaches using predefined visual concepts typically em-
ploy simple object detectors like face [9] and pedestrian [10]
detectors, an enhanced set of detectors like the 80 classes from
YOLO [13], [14], or low-level hand-crafted features [7]. The
most prominent methods in this set are the Sparse Adaptive
Sampling (SAS) [13] and SASv2 [14], which model frame
sampling as a Minimum Sparse Reconstruction problem using
YOLO to construct a content descriptor for the dictionary
entries. A major drawback of these methods is their reliance
on the accuracy of third-party techniques. Moreover, any
application domain changes may need a different detector or
intervention from the method’s developer.

Some approaches use user-provided supervision to compose
frame scores [11], [29]. In recent work, Lan et al. [8] intro-
duced the FastForwardNet (FFNet), an RL-based method that
summarizes videos on the fly by selecting frames with the
most memorable views. Annotated data from video summa-
rization datasets are used as training labels for the agent’s
reward. In recent extensions, the authors explore distributed
and collaborative systems for fast-forwarding multi-view video
streams [15], [17]. A drawback of these methods is the need
for user supervision to create labeled examples or select
objects from a limited set.

In this work, we take a step towards exploring Internet
data to infer the importance of frames to the final user
in Semantic Fast-Forwarding. Specifically, we leverage the
language semantics in freely available raw texts on the Internet
to infer the visual semantics in user videos. Using this rich
information, we create models capable of defining scenes of
significant importance to the watcher.

C. Vision-and-Language Embedding
Cross-modal embedding algorithms have recently emerged

as promising approaches for various multimodal tasks. These
algorithms create a shared embedding space where features
from multiple modalities can be compared. Regarding the
density of the information, visual-language methods can rep-
resent single sentences along with images [30] or videos [31],
and full-text documents (i.e., a set of sentences) along with
images [32] or videos [33].

In this work, we also create models that integrate visual and
textual domains into a unified space by embedding multiple
sentences and frames from the input video. Since these sen-
tences are not generated from the video scenes, we consider
them indirect supervision for our methods.

III. FAST-FORWARDING FIRST-PERSON VIDEOS USING
SOCIAL NETWORK DATA

Social networks are key platforms for people to share their
emotions, attitudes, and opinions. In this approach, we explore
the text-centric data from the users’ social networks to create
personalized hyperlapse videos. Unlike third-person videos,
first-person videos are challenging to accelerate due to natural
body movements. Thus, selecting the best frames requires
optimizing visual stability, speed, and the semantics.

A. Methodology
Given an input video V = [v1, . . . , vF ] of F frames and

a document D = [s1, . . . , sN ] of N sentences, our goal is to
select a subset V̂ ⊂ V with the most relevant frames w.r.t. D,
while preserving visual smoothness, temporal consistency, and
achieving the target speed-up rate S∗.
Frame Scoring. To score each frame based on user prefer-
ences, we build a representation space for visual and textual
modalities. We group word embeddings W = {wi ∈ Rd}Mi=1

into K clusters using K-Means. Since similar concepts are
closer in the embedding space, each cluster/dimension de-
fines a topic of interest, forming the representation vector
x = [x1, · · · , xK ]⊺ ∈ RK , referred to as Bag of Topics (BoT).
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Fig. 1. Video composition. First, we calculate a per-frame interestingness
score. Then, we segment the video into relevant and non-relevant segments,
assigning lower speed-ups to more relevant segments. The final set of frames
is a concatenation of the nodes in the shortest path of each segment graph.

We represent a user by first collecting their Twitter posts
and extracting the concepts (nouns) from positive sentences.
Let Du = {cj}Cj=1 be a document composed of C concepts
and ϕ : Du → W a function mapping a concept c to a word
embedding w ∈ W . Thus, given Dk

u = {c ∈ Du|l(ϕ(c)) = k},
where l assigns a label k ∈ K for an embedding, we can
represent Du as the user’s BoT xu ∈ RK , where xk = |Dk

u|.
We represent a frame vf using weights computed from

relevant regions in the scene, extracted using DenseCap [34].
DenseCap produces coordinates, scores, and descriptions
Df = {s1, · · · , sR} for the R regions. From these features, we
compute the attention (ωa

f ), confidence (ωc
f ), and uniqueness

(ωu
f ) weights. ωa

f weighs the watcher’s attention to specific
objects or regions, and it is computed as the average pixels
value in a saliency map [35]. ωc

f indicates visual accuracy
confidence, and it is directly produced by DenseCap. Some
visual concepts may appear only a few times throughout
the video, being essential to composing the whole video
story. Therefore, we define ωu

f to assign a uniqueness of a
concept, calculated using TF-IDF across the video’s document
collection D = {Df}Ff=1. The final weight for xk in xf ∈ RK

is obtained as xk =
∑

r∈Rf
ωa
f (r) · ωc

f (r) · ωu
f (r), where Rf

are the regions of interest in vf .
We use the cosine similarity between xu and xf to estimate

the user’s interest in a video frame and produce the Interest-
ingness Score profile for the video (see blue curve in Fig. 1).
Hyperlapse Composition. To compose the hyperlapse video,
we employ the algorithm proposed by Silva et al. [12]. It splits
V temporally into T segments based on a semantic threshold
that distinguishes relevant from non-relevant segments (green
line in Fig. 1). Speed-up rates are then calculated for each
segment type, with more relevant segments assigned with
lower rates. Each segment is represented as a graph where
nodes correspond to frames and edges reflect transition costs
between frames. The total edges cost includes terms that

TABLE I
QUANTITATIVE RESULTS. AVERAGE F1 SCORE (%), SHAKING

RATIO (%), AND OUTPUT SPEED-UP VALUES FOR THE OUTPUT VIDEOS.

Dataset Method
F1 Score ↑ Shaking

Ratio ↓ Output
Speed-up∗

CAR CHAIR COMP. PEOPLE TREE

U
TE

Unif. 09.6 11.6 10.8 12.2 10.2 31.1 -
MSH 10.2 10.5 08.3 12.7 11.1 27.0 11.4
MIFF 10.4 10.3 06.1 13.9 11.6 47.1 12.0
Ours 16.4 10.1 23.6 15.1 18.1 37.2 10.1

Se
m

an
tic

D
at

as
et

Unif. 12.9 07.3 06.9 08.1 15.2 11.0 -
MSH 12.5 07.0 05.9 07.7 15.7 04.4 09.7
MIFF 13.1 09.1 07.4 13.6 13.6 08.9 10.2
Ours 15.2 08.8 07.5 12.4 18.5 10.1 09.9

E
go

-
Se

qu
en

ce
s Unif. 12.8 03.7 02.2 15.4 17.9 12.0 -

MSH 11.9 03.2 02.4 14.7 16.4 04.7 11.2
MIFF 12.6 03.9 01.3 17.2 15.4 08.2 12.0
Ours 14.8 04.7 04.4 16.4 18.9 08.2 10.4

*Better closer to 10.

measure the inter-frame relevance drop, instability, motion
speed, and appearance disparity, detailed by Halperin et al. [4]
and Ramos et al. [9]. The frames in the shortest paths in these
graphs are concatenated to compose the final video (Fig. 1).

B. Experiments

Evaluation Setup. We used three datasets in our experi-
ments: UT Egocentric (UTE) [21]; Semantic Dataset [10]; and
EgoSequences [4], [9]. We compared our method against three
first-person fast-forwarding approaches: Uniform Sampling,
Microsoft Hyperlapse (MSH) [3], and Multi-Importance Fast-
Forward (MIFF) [12]. For evaluation, we measured the person-
alization using the F1 Score, the speed-up rate accuracy using
the Output Speed-up (i.e., Ŝ = |V |/|V̂ |), and the instability
using the Shaking Ratio, calculated as the average motion of
the central point between frame transitions using homography
transformations. In addition to real users, we created virtual
users (character-based LSTMs) interested in common social
network topics like Vehicles, Furniture, Technology, Human
Interaction, and Nature for detailed evaluation. We used the
parameters reported by Li et al. [36] for word embedding
(d = 300) and the elbow method (from 21 to 215) to set
K = 213. The target speed-up rate was set to S∗ = 10.
Quantitative Results. We report the average F1 Score, Shak-
ing Ratio, and Output Speed-up values in Table I. Since only
UTE contains human-annotated concepts, we used nouns from
extracted sentences [34] to validate personalization in the other
datasets. Our method generally yields higher personalization
values across most concepts, especially in UTE, with an
average F1 Score 12.8 percentage points higher than the
best competitor using tweets about COMPUTER. We accredit
these results to our frame scoring approach, which effectively
infers user topics and scores relevant scenes higher. Notable
exceptions are the experiments with CHAIR, where Uniform
and MIFF approaches outperformed ours in UTE and Semantic
datasets by 1.5 and 0.3 percentage points, respectively. The
reason is that this concept is constantly not the focus of
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Fig. 2. Scores for bike users in the video ‘Walking 3’ (EgoSequences).

attention since it is always coupled with more prominent
concepts like MEN. We argue that MIFF’s better performance
in the Semantic Dataset may be due to scenes featuring people
seated in chairs or benches, which aligns with MIFF’s focus on
people. Regarding visual smoothness, MSH produced output
videos with the lowest Shaking Ratio values, at least 3.5
percentage points better than the best competitor. This is an
expected result since MSH directly optimizes the smoothness
of its frame selection. All approaches presented Output Speed-
up values close to the target, with our method achieving the
best average values. Therefore, although our frame selection is
more challenging than MSH’s since it includes the semantics
objective, it does not impair the speed-up rate accuracy.
Evaluation by Volunteers. We conducted a survey in which
volunteers watched a video on a web page and were asked
to (i) select the most emphasized content (shown at a lower
speed-up rate) and (ii) evaluate the video’s visual quality.
Most volunteers (60.93% on average) selected the concept
our method emphasizes. Notably, for the concept PEOPLE,
our videos had more correct selections than MIFF (73.8% vs.
64.4%), despite MIFF focusing solely on people. Regarding
visual quality, our method achieved an average score of 3 on
a 5-point Likert Scale, similar to MIFF. This survey indicates
that our method enhances semantic information encoding
without compromising video stability.
Results with Twitter Users. We manually selected active
public users on Twitter (five for each concept) who have
indicated topics of interest in their profiles. We collected their
last 3,000 tweets, when available, and applied our approach
using representative videos from the datasets. Figure 2 shows
the mean and standard deviation for the Interestingness Score
assigned by our approach for cyclists on Twitter in the
‘Walking 3’ video from EgoSequences. The green box shows
one of the frames with the highest score (left), along with
the saliency map (right) and the extracted concepts (bottom).
Despite cyclists’ diverse interests in the video, the frame with
high mutual interest features a man riding a bike, which is a
unique moment in this video, highlighting the importance of
the uniqueness score.
Limitations. Despite promising results, our method may fail to
emphasize the relevant content if related concepts are spread
across distinct clusters. Varying K or using a density-based
clustering method can be an alternative. Additionally, a frame
might receive a low score if its concept lacks visual saliency
or has low TF-IDF due to its recurrence. Another drawback

is the heavy reliance on off-the-shelf components, impacting
both frame relevance and computational resources (time and
memory). In the next section, we attempt to address this issue
by creating an approach that directly models the input text and
frames/segments. Thus, no intermediate steps like computing
attention or extracting captions are required.

IV. FAST-FORWARDING INSTRUCTIONAL VIDEOS USING
TEXTUAL INSTRUCTIONS

Instructional videos and online tutorials have been a key
force in our modern educational routine. While both offer
valuable information, they differ in consumption time. Textual
descriptions are concise, summarizing tasks in a few sentences.
In contrast, instructional videos often include extended, non-
essential segments. Ideally, these videos should be concise yet
visually demonstrate each key step effectively.

A. Methodology

We formulate the fast-forwarding task as a sequential
decision-making process. An agent observes features of the
encoded text and video frames, its position in the video, and its
current average skip rate. Based on that, it decides to increase,
decrease, or maintain the current speed-up rate.
Visually-guided Document Attention Network (VDAN). For
the agent to align instructional text with video segments, we
build an embedding space that encodes both documents and
videos. Let v be a segment of length M from the input
video V = {vf}Ff=1 of F frames, and D = {p1, · · · , pN} be a
document composed of N sentences. We propose a Visually-
guided Document Attention Network (VDAN) that produces
embeddings evf , e

D
f ∈ Rd to represent the visual and textual

data, respectively (see Fig. 3-left).
We present VDAN in three variants: VDAN-S (Single-

frame), VDAN-M (Multi-frames), and VDAN-T (Transformer-
based). VDAN-S is the simpler architecture since it only
encodes a single frame along with the document D, i.e.
M = 1. For the visual branch, we use a ResNet-50 (pretrained
on ImageNet) to extract features ϕ(v), projected into Rd by
a fully connected network. In the textual branch, we employ
a Hierarchical Recurrent Neural Network (H-RNN) with at-
tention mechanisms at each level to weigh the importance of
words and sentences. A key component in the VDAN archi-
tecture is the visual guidance, which bridges both modalities.
To facilitate training and guide the attention weights during
training, we set the first hidden vector of the H-RNN to ϕ(v).
The output of the H-RNN is projected to Rd by another fully
connected (FC) network. VDAN-M addresses temporal model-
ing by using an R(2+1)D-34 (pretrained on IG-65M) instead
of ResNet-50, retaining the same remaining architecture as
in VDAN-S. VDAN-T is based on Transformers, using the
Space-Time Transformer Encoder (pretrained on WebVid-2M)
for the visual encoder and BERT for the textual encoder at the
sentence level. A cross-attention module, adapted from Multi-
Head Attention, receives the sentences (to produce keys and
values) and ϕ(v) to produce the query.
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ii) training a reinforcement learning agent to select which frames to remove
executing actions to increase, decrease, or keep the current skip rate given
the embeddings evf and eDf , the encoded position in the video (epf ), and the
encoded speed-up rate (esf ). The agent navigates throughout the video by
skipping frames at each timestep according to the actions’ probability.

We follow a pairwise training strategy to build the cross-
modal embedding space. Video snippets (or still images) and
their concatenated descriptions from human-annotated visual-
textual datasets are used to compose positive and negative
pairs. We apply the cosine embedding loss to the produced
embeddings evf and eDf . To enhance the attention mechanism,
we shuffle the positive sentences with sentences from a
randomly sampled video, ensuring the attention mechanism
correctly attends to the relevant sentences.
Semantic Fast-Forwarding via Reinforcement Learning
(SFF-RL). We formulate the frame selection as a Markov
Decision Process. We train an agent to observe the current
semantics, its position in the video, and the average speed-up
rate, then adjust the playback rate accordingly.

The agent’s state at step t is composed of concatenated
embeddings as: st = [evf ; e

D
f ; epf ; e

s
f ]

⊺ ∈ S, where eDf and evf
are from VDAN, and epf and esf are defined as follows. The
epf embedding encodes the location of the agent in the video;
we name it Normalized Reversed Position Encoding (NRPE).
Similar to positional encoding in Transformers, but reversed,
it indicates how far the agent is from the video’s end. It is
normalized to ensure consistent actions when equally distant
from different video ends. Let q be the NRPE embedding size.
The dimensions 2k and 2k + 1 (with k ∈ {1, · · · , q/2}) of
our NRPE embedding are NRPE(f,2k) = sin(F−f/F 2k/q) and
NRPE(f,2k) = sin(F−f/F 2k/q). The esf encodes the agent’s
average skip rate; we name it Skip-Aware (SA). It is a one-
hot vector defined as esf = Im(⌊Ŝt⌋ − S∗ + νmax), where Ŝt

is the average skip rate at the timestep t, S∗ ≤ νmax ∈ N+ is
the target speed-up rate, νmax = 25 stands for the maximum
skip rate the agent can achieve, and Im(ι) denotes the ιth row
of an identity matrix of size m.

We define the action space, A, with three components:
decelerate; do nothing; and accelerate. The decelerate action
updates the agent’s states as ν = ν − ω and ω = ω − 1, where
ν is the current skip rate (velocity) and ω is the rate of
change (acceleration). Similarly, the accelerate action updates
the states as ν = ν + ω and ω = ω + 1. The do nothing action
keeps ν and ω unchanged.

The goal of the agent is to maximize the expected sum
of discounted rewards: Rt = E[

∑T−t
n=0 γ

nrt+n], where t is the
current timestep, rt+n is the reward n timesteps into the future,
T is the total number of timesteps, and γ ∈ (0, 1] is a discount
factor. Our immediate reward encourages the agent to adjust its
skip rate based on the semantic similarity between the textual
and visual data in the upcoming video segment while also
considering the overall speed-up rate objective in the long
term. At training time, after taking action at ∼ π(a|st, θπ) at
step t, the agent receives the following reward signal:

rt =

{
eDf · evf , if t < T

λ ∗ exp(−0.5 ∗ ( ŜT−S∗

σ )2), otherwise,
(1)

where λ controls the relative importance of the overall speed-
up rate in relation to the frames’ relevance in the output video.
The terminal reward resembles a Gaussian function centered
at S∗. Semantically, the agent receives higher rewards if eDf
and evf point in the same direction in the embedding space.
This encourages the agent to reduce the speed and accumulate
positive rewards, as neighboring temporal frames are likely to
yield higher reward values due to their visual similarity.

We use REINFORCE [37] to train the policy π(a|st, θπ)
for the agent. Additionally, a state-value function δ(st|θδ) is
trained with a regression loss to estimate Rt, reducing gradient
variance. Both π and δ are fully-connected networks with
parameters θπ and θδ , respectively. At test time, the agent
chooses the action argmaxa π(a|st, θπ) at each timestep t.

B. Experiments

Evaluation Setup. We conducted our experiments in the
YouCook2 [38] and COIN [39] datasets and compare our
method against Sparse Adaptive Sampling (SAS) [13],
SASv2 [14], Bag-of-Topics (BoT) from Sec. III, and Fast-
Forward Network (FFNet) [8]. FFNet serves as a semantic
benchmark since it disregards the target speed-up. Evaluation
metrics include F1 Score and Output Speed-up (OS). To
balance these metrics, we introduce Overall Performance (OP),
computed as the harmonic mean of F1 and OS accuracy
(the value in a Gaussian centered at S∗). For VDAN, we
set d = 128 and train it for 100 epochs in VDAN-S using
MSCOCO [40] and for 30 epochs in VDAN-M/T using
VaTeX [32] with learning rate of 1e−5. For SFF-RL, we freeze
the VDAN weights and train the agent for 100 epochs using
the Adam optimizer with a learning rate of 5e−5 for the policy
and 1e−3 for the state-value. After running a grid search,
we set σ = 0.5 and γ = 0.99. We empirically set λ = F for
VDAN-S and λ = F ∗ for VDAN-M/T, where F ∗ is the target
number of frames.
Quantitative Results. Table II shows the results for all



TABLE II
COMPARISON WITH BASELINES. THE TARGET OS VALUES ARE S∗ = 12

FOR YOUCOOK2 AND S∗ = 16 FOR COIN. BEST AND SECOND-BEST
VALUES ARE IN BOLD AND ITALICS, RESPECTIVELY.

Baselines Ours

SAS SASv2 BoT VDAN-S VDAN-M VDAN-T FFNet

Yo
uC

oo
k2 F1

1 14.44 16.20 14.05 14.36 17.86 17 .49 18.86

OS2 11.64 10.32 12.14 12 .24 11.68 11.75 11.90

OP1 25.01 19.06 24.61 25.03 30.07 29 .63 31.72

C
O

IN

F1
1 13.20 13.90 13.01 13.40 17.18 14 .73 17.66

OS2 16 .10 14.09 16.07 16.67 14.99 16.22 16.45

OP1 22.82 19.78 23.02 23.24 27.98 25 .64 29.74

1Higher is better (%) 2Better closer to S∗

compared methods in both datasets. Since FFNet does not
allow a target speed-up rate, we used its average OS, ⌊Ŝ⌉ = 12
(YouCook2) and ⌊Ŝ⌉ = 16 (COIN), as targets for all methods.

The results show that our approach in at least one of its
VDAN variants significantly outperforms all competitors in F1,
as verified by a t-test, without significantly compromising the
output speed-up in both datasets, as reflected in the OP metric.
It means that our agents effectively use natural language
instructions to match them to the current scene and decide
what to skip. Conversely, SAS and SASv2, which use YOLO
for semantic encoding, did not perform well due to a lack
of detail in object interactions requiring motion modeling.
BoT also underperformed, likely due to its reliance on the
accuracy of external components. For instance, in many cases,
a person carrying out the task is given higher saliency than the
ingredients themselves.
Qualitative Results. Fig. 4 shows a frame selection performed
by our agent using VDAN-M as the semantic encoder. The
green vertical bars represent the selected frames, and the black
contiguous blocks the ground truth. Note that our method
performs a denser frame selection on segments where the
instruction is depicted (images 1 and 3). The agent increases
the video playback speed, producing a sparser frame selection,
mostly in segments with no instructions (image 2). Occasion-
ally, the agent may erroneously reduce speed in non-instruction
regions due to high visual-text similarity (image 4) or even
skip relevant frames to meet the desired speed-up rate.
Ablation Studies. We tested our agent’s ability to meet target
speed-up rates by running the inference using rates from 2 to
20 and the same trained agent. We verified that the absolute
errors (i.e., |Ŝ − S∗|) are, on average, 0.55, indicating effective
control of our agent over the output video’s length.

We evaluated the impact of each component in our approach
using the VDAN-M variant in YouCook2. The SA element is
crucial for meeting the target speed-up rate; without it, the
agent either accelerates the entire video at νmax or does not
accelerate at all. Without the NRPE component, the agent is
cautious about skip rates, avoiding significant speed changes
to preserve frame relevance, as it lacks awareness of the

0 1000 2000 3000 4000 5000 6000 7000 8000
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1 2 3 4
S*=12x

12.69x

1. Mix olive garlic lemon zest
italian seasoning and salt and pepper

5. add anchovy paste worcestershire sauce 
olive oil and parmesan cheese and whisk it

Fig. 4. Our method’s frame selection (VDAN-M). Green vertical bars
represent the selected frames and black contiguous blocks the ground-truth.
Our method performs a denser frame selection on relevant segments (images
1 and 3) while discarding irrelevant ones (image 2) to meet the user’s desired
speed-up rate (Ŝ = 12.69). The agent may errouneously select frames in
regions without instructions (image 4) due to their similarity to the input text.

video’s end. The agent with all proposed components balances
relevance and speed-up rate best. We also tried a non-RL
variant by replacing our agent with the BoT frame selector
and using the eDf and evf similarity scores. Results confirm
the superiority of our SFF-RL stage not only in the F1, OS,
and OP metrics but also in running time, taking 13.87× less.
Limitations. Despite achieving the best results, our method-
ology has limitations. The agent may incorrectly emphasize
non-instructional segments (see Fig. 4, image 4). The reward
function is sparse regarding speed-up rate deviation and in-
tensifies as the agent reaches the video’s end, causing it to
sometimes disregard relevant segments near the end.

V. CONCLUSION

In this work, we tackled the problem of fully automatic
acceleration using web texts as semantic clues to define the
frames’ relevance for the user. We approached this problem
in two different contexts, developing methodologies capable
of extracting semantic information from natural language
to identify visual concepts and events of higher relevance.
Quantitative and qualitative experiments, ablation studies, and
a user study demonstrate the superiority of our methods over
the baselines. Although the second method takes a significant
step towards an end-to-end approach, reducing the reliance on
off-the-shelf components, some challenges remain, particularly
in avoiding the emphasis on non-relevant segments. Future
directions include using audio as supervision, which could
help disambiguate relevance and reduce the need for human
annotations since it is commonly present and naturally aligned
with the visual stream. Another direction is employing mul-
tiple agents for video acceleration to collaboratively gain full
video context and overcome limitations like sparse rewards.
Acknowledgments. We thank CAPES, CNPq, FAPEMIG, and
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