2

Solving Rational Expectations
Models

In Chapter 1 we defined the rational expectations hypothesis (REH) as
the assumption that people’s subjective probability distributions about
future outcomes are the same as the actual probability distributions
conditional on the information available to them. In practice we will
be concerned with moments of these distributions, most frequently the
mean, but also occasionally the variance, and very rarely the higher mo-
ments (the skewness and so on). When people talk about ‘expectations’
in popular discourse they mean some single number for the future out-
come that is expected to occur; but a moment’s thought shows at once
that this is not a sensible definition of expectations. Since the future
is governed by chance, this exact number will only occur by chance. A
better definition would be that ‘the expectation’ is some summary mea-
sure of what may happen, that is, of the probability distribution. Such a
summary measure would be, for the central tendency of the distribution,
the mean (the first moment); and for the tendency for dispersion around
the mean, the variance (the second moment). Then either implicitly or
explicitly there would be an indication of the asymmetry of the distri-
bution (its skewness or third moment), and its truncation at the tails
(its kurtosis, or the fourth moment). These moments of a distribution
over x; are, respectively, Ex;, E(xv; — E x4)?, E(x; — FE 24)%, E(xy — E
x;)* and so on for higher moments. Hence ‘expectations’ are shorthand
for some measure of a probability distribution; in practice we use the
mean as the main summary measure, assuming that the other moments
are known in some way — this implies that the main feature of the
distribution that is changing over time is its mean.

The mathematical term for the mean of a distribution is its ‘expected
value’, and it is usual for applied work on the REH to identify the ‘ex-
pectation of z;4; (z at time t + i)’ with the mathematically expected
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value of x; ;. In this book we shall use the notation E;;z;; for expec-
tations framed for the period ¢ + 4, on the basis of information generally
available at time ¢ + j; j, 7 can be positive or negative. F is the mathe-
matical expectations operator, meaning ‘mathematically expected value
of’. Formally Ey x4, is defined as E(xyy; | P1y;) where @,y is the set
of generally available information at time ¢t + j. Of course, once x¢4; is
part of the information set ®,4;, then Ey x4 = 44, trivially.

If we wish to indicate that the information available to those fram-
ing expectations is restricted to a set 0:;y; at ¢t 4 j, we shall write
Eiij(x¢44 | 0445), that is, the expectation of x at t + 4 framed on the
basis of information set 6 available at ¢t + j. It is natural to think of
Eyyjxiy; as ‘expectations formed at ¢ 4 j of x at ¢ + ¢’; this will do for
some purposes but it is not quite accurate. It is not in fact the date
at which expectations are formed that matters but rather the date of
the information set on the basis of which they are formed. Because of
information lags, people may form expectations for this period on the
basis of last period’s information, and we would write this as E;_1x;.

Suppose for extreme simplicity that the model of z; is:

Tip1 = Tt + €441 (1)

where ¢; is normally distributed with a mean of 0, a constant variance
of 02, independence between successive values, and independence of all
previous events; that is, e, : N(0, 02), E(e; +¢e14;) = 0 (i # j) and
Eeiti | 445 =0 (¢ > j). Equation (1) states that z; follows a ‘random
walk’ (the change in z; is random).

The expectation of x; at ¢ is x; if we assume that people know x;
then. They cannot know e;41 because it has not yet occurred and as a
random variable its expected value is zero. If we write ®, as the total
information set at t, then:

Exip1 = E(xppr | ) = (e + 041 | @) =20 + Eegr | $r) = a4
(2)

Eixiq1 will be an unbiased predictor of z;yq, that is, the mean (or
expected value) of the prediction error 411 — Eyxyyq is zero. Thus:

E(l’t+1 — Etl't+1) = E(.Tt + 441 — ZBt) = E6t+1 =0 (3)

FEixyq 1 will also be the efficient predictor of z;41, that is, the variance
of the predictor error is smaller than that of any other predictor. Thus:

Variance (ZL’t+1 - Etxt+1) = E($t+1 - Etl't+1)2 = E(5t+1)2 = 0'2 (4)

This is the minimum variance possible in prediction of ;11 because
g€t41 is distributed independently of previous events (the meaning of
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‘unpredictable’). Suppose we add any expression whatsoever, say Bz,
where z; is a variable taken from ®;, to Fyxs41, making another predictor
§t+1:

Tip1 =2 + B2 (5)
Then:
E($t+1 — i'\t+1)2 = E(€t+1 — ﬁZt)2 = 0'2 + ﬂQEZtZ (6)

The variance will be increased by the variance of the added expression,
because this must be independent of €441.

The unbiasedness and efficiency of their forecasts are the two key
properties of rational expectations forecasts that we will constantly re-
turn to in this book. However for the time being, in this chapter, we
shall restrict ourselves to explaining how the rational expectation of vari-
ables determined in more complex models is to be found, and how those
models are accordingly to be solved.

A
Pt .

Et-‘l pt=ﬁ'y* ____________________________
D'(M+&=pr+Yt)

D*(Mm=pr+y:)

[
L

y* Yt

Figure 2.1: A simple macroeconomic model illustrated

THE BASIC METHOD

Now take a simple macro model (illustrated in Figure 2.1):

my = pr + Y (7)

pr=FEi1pe +6(ye — y7) (8)
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me :m—f—q (9)

where m, p, y are the logarithms of money supply, the price level, and
output respectively; y* is normal output, 72 is the monetary target (both
are assumed to be known constants). Equation (7) is a simple money
demand function with a zero interest elasticity and a unit income elastic-
ity: in Figure 2.1 it is drawn as an aggregate demand curve with a slope
of —1. Equation (9) is a money supply function in which the government
aims for a monetary target with an error, ¢;, which has the properties
of our previous € in (2.1). As the error shocks the economy, aggregate
demand shifts up and down around D*D*, its steady-state position set
by m. Equation (8) is a Phillips curve as can be seen by subtracting p;_
from both sides; in this case it states that the rate of inflation equals
last period’s expectation of the inflation rate plus a function of ‘excess
demand’. We can think of the ‘periods’ as being ‘quarters’ and prices as
being set, as quantities change, on the basis of last quarter’s information
about the general price level — hence we appeal to an information lag of
one quarter and F;_jrefers to this quarter’s expectation formed (the op-
erative element) on the basis of last quarter’s information. In Figure 2.1,
equation (8) is drawn as the aggregate supply curve; rising output re-
quires rising prices, given expected prices, because each producer wants
his own relative price to be higher to compensate for the extra effort of
higher supply. The vertical supply curve, S*S*, is the long-run Phillips
curve, indicating that when producers know what the general price level
is they will not be ‘fooled’ into supplying more output as it rises because
they realize their own relative price is unchanged.

This model has three linear equations with three endogenous vari-
ables, two exogenous variables, m and ¢;, and an expectation variable,
FEy_1p;. Given the expectation, we can solve it normally, for example,
by substitution. So substituting for m;and p; from (8) and (9) into (7)
gives us:

m+e=Eip+ (1+ 68y — 6y (10)

This corresponds to the intersection of the D’D’ and SS curves in
Figure 2.1. But we now need to find E;_1p;, to get the full solution.

To do this, we write the model in expected form (i.e. taking expec-
tations at ¢ — 1 throughout) as:

Ei_1my = E_1p + Ei_ 1y, (7°)
Ei_1pr = Ei_1pe + 8(Ey—1y — y*) (8°)

Et_lmt =m (96)



46 Models of the Economy

Substituting (8)¢ and (9)¢into (7)¢ gives:
Eiapp=m—y" (11)

This is the intersection of the D*D* and S*S* curves in Figure 2.1.
S*S* shows what producers will supply on the assumption that the prices
they receive are those which they expect (this is an ‘expected supply’
curve); D*D* shows what output will be demanded at different prices
on the assumption that the money supply is 7, as expected — (an ‘ex-
pected demand’ curve). Where these two curves intersect is accordingly
expected output and prices.

Equation (11) is substituted into (10) to give the full meaning of the
P, Y intersection in figure 2.1:

=y + 3 12
Yt Yy 1 5 t ( )
Consequently, from (8) and using (11)
=m — * + 3 13
Pt Yy 1 5 t ( )

The solutions for y; and p; consist of an expected part (y* and m —
y*, respectively) and an unexpected part (functions of &;). Rational
expectations has incorporated anything known at ¢ — 1 with implications
for p and y at time ¢ into the expected part, so that the unexpected part
is purely unpredictable.

This model, though simple, has an interesting implication, first point-
ed out by Sargent and Wallace (1975). The solution for y; is invariant to
the parameters of the money supply rule. Output would in this model be
at its normal level in the absence of surprises, which here are restricted
to monetary surprises. If the government attempts to stabilise output
by changing the money supply rule to, say,

my = — B(yi—1 —y*) + & (14)

then still the solution for output is (12), because this money supply rule
is incorporated into people’s expectations at ¢ — 1 and cannot cause any
surprises. The only effect is on expected (and so also actual) prices:

_ — p
Ei_1pr=m— =y )y =m—-y - ——e 15
1P =T = Blye—1 —y") =y =M —y" — e (1)
— 15 0
= — oyt - L= _ _— ]_
Pe=TM =y =15 1+1+6€t (16)
Note that this will raise the variance of prices around their long-run value

m—y* by (%)202. This is illustrated in Figure 2.2, where we start this
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p A
D' S* S

Po

Et.1po = m-y*
D'(m+ €0= E¢.1po+Yo)
P1 D*

D"(n_1 - AYoY’] = p1+ys

[
L

Yt

Figure 2.2: A simple model with an interventionist monetary rule

model out from steady state at period ¢t — 1, where E;_1pg = ™ — y*,
FEi_1yo = y*; let there be a shock in period 0, €.

The solution for (pg, o) is the same as before. But now the govern-
ment responds in period 1 with a money supply contraction, reducing
m to m — T%eo; this shifts the aggregate demand curve to D" D”. But
because producers know in period 0 that this reaction will occur, they
work out the intersection of their expected supply S*S*, and the ex-
pected demand, D" D", correctly anticipating that p; =m — %60 —y*.
Where these curves intersect is accordingly expected output and prices.

This of course contradicts the well-known results for models with
backward-looking expectations whereby stabilization policy by govern-
ment can reduce fluctuations in output, provided the government chooses
the appropriate monetary target. For example, suppose we had assumed
in accordance with the popular practice of the 1960s that expectations
of the price level were formed adaptively. The adaptive expectations
hypothesis is that:

vy — iy = p(rea —wiy)  0<p <1 (17)

or that expectations of x; change by some positive fraction, pu, of last
period’s error. This can be written equivalently as:

wp = pxe—1 + (1 — p)ag_y = pwe—1 + (1 — p)[pai—o + (1 — p)zi_y]

oo

= Z (1 - /"L)ixt—l—i (18)

=0
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by continuous substitution for xf_,,xf_5 ...

Substituting p§ for E,_1p; in our simple model of (7) to (9) turns
it into an orthodox dynamic model to be solved by standard methods.
Equation (8) becomes:

Pt = Z (1- M)ipt—l—i +0(ye —y™) (2.8%)
i=0

We can see that expected prices depend not on the planned money
supply but on past events (past prices), which were known to the gov-
ernment last period. Consequently the government can plan a money
supply for this period confident that it will not be ‘frustrated’ by a re-
sponse from expectations. They can set a target m™*, such that y; = y*.
This will be a target which accommodates prices at their expected level,
delivering p; = p¢; for (8)® assures us that when p; = p§, y; = y*. By
(7), when p; = p§ and y; = y*, then:

m* =p; +y" = p Z (1= p)'prr-i+ 9" (19)
=0

We now find that the solution for output depends on the deviations
of money supply from this optimal target:

1
=y +——(my—m" 20
Y=y + I (5( t ) (20)
These deviations may be due either to unpredictable errors, ¢, as in
the rational expectations (RE) case, or to a policy failure to plan m; at
m*; in other words:

my —m* =g +m’ —m* (21)

where mT is the actual policy target. But in this adaptive model both
affect output, whereas in the RE version only ¢, the error term, does.
In other words, the monetary policy chosen affects output not, as in the
RE case, merely the monetary surprise.

In subsequent chapters we shall be examining this RE model and a
number of considerably more complex RE models whose properties will
differ from this one substantially. Nevertheless it is a common feature of
all these models that there is an important difference between the effects
of an anticipated and of an unanticipated change in any exogenous vari-
able; by contrast, in models where expectations are formed adaptively
(or as any fixed function of past data) it makes no difference. This is
probably the most fundamental result of rational expectations. It is the
nature of the difference of these effects that forms the detailed study of
RE models.
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The method of solution set out above (the ‘basic’ method) will suffice
for all RE models in which there are expectations (at any date in the
past) of current events only. To repeat, this method involves three steps:

1. Solve the model, treating expectations as exogenous.

2. Take the expected value of this solution at the date of the expec-
tations, and solve for the expectations.

3. Substitute the expectations solutions into the solution in 1, and
obtain the complete solution.

RE MODELS WITH EXPECTATIONS OF FUTURE
VARIABLES (REFV MODELS)

It will very often, in fact almost invariably, be the case — in the nature
of economic decisions which, as we have seen, involve a view of the
future — that expectations of future events, whether formed currently
or in the past, will enter the model. For these REFV models, our basic
method must be supplemented and it can be replaced by more convenient
alternatives.

For example, add to our previous simple model the assumption made
by Cagan (1956) in his influential study of hyperinflation, that the de-
mand for money responds negatively to expected inflation (we can think
of this as approximating the effect of interest rates on money demand in
less virulent inflations). Let the model now be:

me =P + Yr — (Er_1pey1 — Er_1pe) (> 0) (22)
pr=FEiape +6(ye — y*) (8)
my = m+ Et (9)

We keep (8) and (9) as before. In (22) expectations of inflation in the
current period are regarded as formed on the basis of last period’s (quar-
ter’s) information; as in (8) we are appealing to an information lag.

Let us use our basic method and see how it has to be adapted for
this model. Step 1 (solving given expectations as exogenous) gives us:

1 *
m+er =p+ E(pt — Eiap) +y" — a(E—1pev1 — Ev_apr) (23)

This is the same intersection (p;, y;) as in Figure 2.1, except for the
extra term —a(F;_1pi+1 — Fy—1p:) which shifts D D' relative to what
is shown there.
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To find E;_1p; and E;_1p:+1 we now take expectations of the model
at t — 1 (step 2) to yield:

m—y =1+ a)Ei_1pr — aEi_1pia (24)

Equation (24) can solve for E;_q p; in terms of m, y*, and Fy;_1ps11.
But this is not a solution because F;_1p;+1 is not solved out; we appear
to have shifted the problem into the future.

To solve for E;_1p;11 we may lead the model by one period (for
example, write (22) as my11 = pry1 + Yer1 — (Eiprr2 — Eipira)) and
take expectations of it at ¢ — 1 as before. This yields analogously:

m—y =1+ a)Er1pr1 — 0F_1Dey2 (25)

We have now solved for E;_1p;11 in terms of m, y*, and F;_1piio
again shifting the problem into the future. This naturally leads us to
solving for expected values using the method of forward iteration pro-
posed by Thomas Sargent. We write (25) as:

1

__ % (67
H——a(m -y )+ ——FEi_ 1Dy (26)

Ey 1piy1 = T+ra

Substitute successively (forwards) for E;_1piio, Ey_1pi+3 and so on
in (26) to obtain:

E —1Ni N oyt () (27)
tflpt—lJrai:O +a m-=y I+a t—1Pt+N

Let N — oo and assume (as seems natural) that E;_ipsy; is stable,

so that E;_1piyn — its equilibrium as N — oco. Since (HLQ) =0

also as N — oo the final, remainder, term in (27) disappears and (27)
becomes:
1 S o 1 [ — * — *
Brap=—— 3 (=2 )im—y) =m—y (28)

14+« P 14+«

We can reach the same result by using the forward operator, B~! (B
is the backward operator that instructs us to lag the variable but not
the expectations date, unlike L which instructs us to lag both).

Write (24) as

«
14+«

(1+a) (1—

It follows that:

Bl) Ei api=m—y* (29)
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1 m—y* 1 > o 1 i_
E_ = = B — *
t—1Dt 1+O‘1_1+LQB71 1_'_0[;(1_’_& )(m y)

=m-y" (30)

In this particular case, the exogenous variables are constant. How-
ever, Sargent’s method can be generalised; for example suppose that the
money supplies were exogenously given to us (it might be that each pe-
riod the central bank’s policies are reassessed in the light of a variety
of current information including bank announcements and the result is
most simply written down as a new set of projections each time.) The
model is the same, (22) and (8), except for the omission of (9).

(23) now becomes:

1 *
my = pg + g(pt — By ap) +y" — a(Bi—1pev1 — Er-1py) (31)
Subtracting from this its expected value at ¢t — 1 yields:

pe — E_1pr = (mt - Et—lmt) (32)

1446
which tells us that the solution for prices depends on the revision to the
money supply planned at ¢ plus expected prices.

To find expected prices take expectations of (31):

By amy —y* = (1+a)(Ei1pi) — a(Er—1pi11) (33)

from which we obtain using the forward operator:

[ a
Ei_1pr = [Zl—l-_oz g( T a)zEt—lmt-&-i] -y (34)
In other words the whole path of future monetary policy foreseen at ¢ —1
determines expected prices for ¢.

We have now seen how in a rational expectations model the expected
future affects expectations of the present. Plainly the direction of cau-
sation is from the (expected) future to the (expected) present. We note
that (24) is a difference equation which had to be ‘solved forwards’ by
iteration into the future; the present depends on the future via a stable
root, 1%1 However, it is possible — though on reflection odd — to
look at the relationship differently, as one where the expected present
affects the expected future. Looking at it this way draws attention to the
possibility that a rational expectations model may have self-generating
explosive paths or ‘bubbles’.

Suppose we go back to (24) and (25). We could have carried on in
this way indefinitely and it is easy to see that we would have obtained a
series of equations which could be written as a sort of difference equation:

m—y" =1+ &) 1pryi — 0F_1Deyit1 (1 2 0) (35)
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This is actually a difference equation in a variable pf, |, defined to be
Py as expected from ¢ — 1:

Vit — b = () (i > 0) (36)
The solution of this first-order non-homogenous difference equation is
familiarly:
14+«
Q@

0) (37)

WV

Pivi=m—y" +[pf — (m—y")|( )" (i

where T — y* is the equilibrium of p; (the ‘particular’ solution), prO‘ is
the unstable root (note that it is the inverse of the stable forward root
when we solved the model forwards) and p§ — (7 — y*) is the constant
(determined by the initial value p¢) in the ‘general’ solution. Here we
are solving the model ‘backwards’ from the future to the present in the
sense that the (expected) future is depending on the (expected) present;
the same root that was stable when the model was solved forwards is
now unstable when the model is solved backwards.

This can be understood from Figure 2.3. Here we have drawn the
long-run Phillips curve, S*S*, and the aggregate demand curve, D*D*,
on the assumption that prices are not expected to change (Ei—1Apiyr1 =
0). On this assumption the expected price level is T — y* as before (see
Figure 2.1). But we can rewrite the expected solution of equations (22)
and (9) as ;1 Apyy1 = L (E;_1p;+y* —mm) which shows that if expected
aggregate demand (E;_1p; + y*) exceeds the expected money supply, 77,
then it must be because prices are expected to rise; and vice versa. So
to the right of D*D*, prices are expected to rise, and to its left they are
expected to fall, as shown by the arrows on Figure 2.3. Since output
is always expected to be y* on S*S*, the possible solution for F; 1p;
and subsequent E;_1py41 are shown by the arrows on S*S*. One such
solution is shown by the intersection of the D'D’ dashed curve showing
the expected aggregate demand curve, when prices are expected to rise.

CHOOSING A UNIQUE DEMAND PATH

Equation (37) and Figure 2.3 give an infinite number of solution paths
for pf ; (i > 0). For we are free to choose any value of pf we like; the
model does not restrict our choice. Another way of looking at (37) is to
say that we can choose any future value for any pf,; we wish and work
back from that to a solution for pf. We could already have guessed that
this would be so from (24) for, to obtain the expectation of a current
value, we were compelled to take a view about Fi_1ps+1. Any view of
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Figure 2.3: The solution expected at t —1 of a simple REFV model, illustrated
for an unstable path

this future will then compel a present which is consistent with it; any
set of expectations is therefore self-justifying.

REFV models (that is, the vast majority) would be little better than
curiosa if they did not carry with them additional restrictions sufficient
to define a unique solution; for they would merely assert in effect that
‘anything can happen provided it is expected, but what is expected is
arbitrary’. Worse still, as (37) illustrates, these paths for events can be
unstable; in fact, our model here implied that all paths for prices except
that for which p§ = m — y*, explode monotonically as shown in Figure
2.4. Thus our particular REFV model would assert that only by accident
would an equilibrium price level be established, otherwise prices would be
propelled into either ever-deepening hyperdeflation or ever-accelerating
hyperinflation, even though money supply is held rigid! (Output in this
model is always expected to be equilibrium.) While such an assertion
may appeal to some it has not impressed those who have espoused RE
models; they have looked instead for additional restrictions.

We have already hinted at the source of an additional restriction in
our model by noting the instability of all but one path. It is clear that
the unstable paths are in some sense absurd. The question is: what
would prevent them? It has to be the case that behaviour would alter
in such a way as to prevent them.

Consider, for example, the path of ever-accelerating hyperinflation
anticipated fully now (on the basis of last period’s information). People
deciding how much money to hold for transactions would expect now
that in so many years they will need truckfuls of money to buy the daily
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groceries; they would therefore find an alternative means of carrying
out transactions to avoid the investment in trucks they will otherwise
anticipate. They would use beans or cows or sophisticated forms of
barter to replace the old money. Ultimately the old money would not be
used at all; prices would be defined in the new money, say beans.

But money has an issuer; it may be a bank or a government. The
issuer derives profits from people’s use of its money issue, and it will pay
them to avoid its replacement. This it can only do by stopping any such
hyperinflation ‘bubbles’ occurring. It turns out that a commitment on
the issuer’s part to put an end to any such inflation at some point, by
decreasing the money supply at a sufficient rate to offset any decline in
real money balances held, will do the trick. For if people expect that
inflation will stop at some period t+ N (at which the bank will ‘step in’),
then this implies an arresting of the very ongoing process that sustains
the earlier path. Real money balances desired in t+ N will now be higher
than anticipated in that path, so inflation must be lower in ¢t + N. But if
this is so, then real money balances in ¢t + N — 1 will be similarly higher,
so also inflation will be lower then; and so on. The whole path will be
invalidated.

A

Et 1P ’_/V

m-v* | |

t t|+1 t+|2 time

T
T

Figure 2.4: The solution paths for the price level expected at ¢ — 1, as in
equation (37)

v

In fact we can show this formally by imposing on the difference equa-
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tion (37) the condition that :
Piyiy1 — Pipi =0 (i = N) (38)

and letting (37) run from N <4 > 0, since ¢ + N is the period when the
bank’s new regime takes over. Using (37) for ¢ = N, we have:

m—y" =piin +apiyn — Piynia) = by (38) piyy (39)
By (37) this implies:

m—y*:m—y*+[p§—<m—y*>](1;0‘)N (40)

pi=m-y") (41)

It can be seen that (41) when applied to (37) selects the unique stable
path for p¢,; so that:

P =m—y" (i=0) (42)

An analogous argument can be constructed for the path of ever-
deepening hyperdeflation. In this case people will ‘demand’ infinite
amounts of money because its return is infinite in the long term; this
implies that the money will be hoarded and disappear from circulation.
The bank or government will wish to prevent this (because otherwise
some other money will come into existence) by issuing money until the
profit rate on the issue has returned to a normal level, that is the rate of
deflation is zero. The knowledge that the issuer will go on issuing money
until this occurs acts to impose the same condition (38) on the model.

We have constructed verbal arguments to justify the imposition of a
‘terminal condition’ such as (38) in our model. These arguments appeal
to forces not explicitly in the model, but which would be brought into
play by certain types of behaviour apparently allowed for by the model.
These forces will differ from model to model; for example we may appeal
to legal controls or supervisory agencies to ensure ‘orderly markets’, or
to competitive forcesl, or to precepts upon government itself. But an
RE model with expectations of the future (REFV model) is incomplete

I For example, in the competitive equilibrium model of the labour market of Lucas
and Sargent, as set out in, for example, Sargent (1979a, chapter 16) the transver-
sality conditions of households and firms supply the necessary terminal conditions.
These conditions are necessary for optimality; in other words, explosive paths for
labour supply and demand are not followed by households or firms because they are
suboptimal.
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without some forces of this kind to supply an additional restriction, such
as the terminal condition here.

Another way of describing our ‘terminal’ condition would be as a
‘side’ or ‘transversality’ condition: all these express the same idea, that
there is an additional restriction on the model, here coming from govern-
ment or central bank behaviour designed to rule out what is from their
(or society’s) viewpoint an undesirable outcome, in this instance for the
monetary environment. We will come across other such transversality
conditions later in this book (for example, on private or government
borrowing designed to rule out unsustainable and thus undesirable bor-
rowing paths).

Our terminal condition (38) has the effect in the model here of se-
lecting the unique stable path. For REFV models with such a unique
stable path like the one here (that is, with the ‘saddlepath’ property, so
called because any deviation from this path is unstable), the imposition
of terminal stationarity on the expectations ensures the selection of this
path. For such models, it is therefore only necessary to specify as a side
condition on the model that the solutions be stable or stationary; this
condition is referred to variously in the literature as the ‘stability’ or
‘stationarity’ or ‘convergence’ condition, or ‘ruling out speculative bub-
bles’ or ‘boundedness’. We appealed to it when we used the forward
iteration or operator method above; to obtain that solution we had to
assume that the expected price sequence was stable.

We have now completed step (2) in our solution procedure, albeit in
a more complex manner than before; call it step (2'). We proceed to
step (3) and substitute for F;_1p;, Er_1pi+1 into (23). It turns out in
this model that the solution is the same as for our earlier model, as the
reader can easily verify.

We may now review our basic method for solving REFV models:

1. Solve the model, treating expectations as exogenous.

2. Take the expected value of this solution at the date of the ex-
pectations. If the model generates a unique stable path for the
expectational variables, impose the stability condition, and derive
this solution for the expectations. Do so either by the forward
iteration or the backward difference equation method.

3. Substitute the expectations solutions into the solution in 1 and
obtain the complete solution.
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BUBBLES

The significance of the terminal condition that enforces stability can be
seen by considering ‘bubbles’ or ‘will o’ the wisp’ variables. Suppose
we had no such terminal condition. Then it can be seen that it can be
rational to expect at t — 1 any price level for ¢ provided one also expects
an ever-exploding price level for the future, the ‘bubble’.

It is possible to add arbitrary variables to the solution of REFV
models provided they obey certain processes dictated by the coefficients
in the model’s future expectations (see, for example, Canzoneri, 1983;
and Gourieroux et al., 1982).

For example, take the model we have been looking at, of (22), (8)
and (9). Suppose people believe at t — 1, for no good reason, that prices
would be affected by (L(';—a)iEt,lth where:

B 1244 = 21 (43)

(that is, 2z; is a martingale). Their belief, though ‘irrational’; would
formally be validated by the model, since

1+«

B apivi = (M —y") +( ) By 1244 (44)
is a solution to the model, as can be verified by substituting (44) and (43)
into (24). Any ‘will o’ the wisp’ variable, z;_1, could therefore produce
an irrational solution to an REFV model by this self-validating process.

This is simply an implication of the indeterminacy of p{ we noted
earlier in commenting on equation (37); so we can write p§ — (7 —
y*) = pu;_, where p,_ is anything. However, the solution to the bubble
problem is one and the same as that of the indeterminacy and instability
problem: we have to impose an additional restriction on the model to
ensure determinacy and stability. Since the exploding bubble must at
some point violate the terminal condition, the whole path collapses back
to the unique stable solution.

This terminal condition approach to ruling out bubbles is similar in
effect to McCallum’s suggestion (1983) that a ‘minimum set of state
variables’ (MSV) be imposed on the solution; that is, one eliminates as
many state variables as possible from the solution while still maintaining
consistency with the rational expectations constraint. In effect the min-
imum set excludes any such extraneous variables that enter as bubbles.
We would argue that the justification of imposing MSV lies in the op-
timizing transversality conditions on the agents in the model. However,
of course in practice the procedures deliver the same solution.
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OTHER METHODS OF SOLUTION FOR REFV
MODELS

Not surprisingly there are several other methods for finding the unique
stable solution to an REFV model which has one. We shall explain two
in detail because they have been widely used: the Muth method of unde-
termined coefficients and the Lucas method of undetermined coefficients.

The Muth Method of Undetermined Coefficients
The Muth method starts from the proposition that the general solution

of our model can be written (via the Wold decomposition — see the
time-series annex at the end of the book):

Dt =D+ Z Tit—i (45)
i=0
o

Y =7+ Z Pict—i (46)
i=0

where P, § are the equilibrium values of p;, y;. Note that this way of
writing the solution assumes that there are no expected future exogenous
variables or else that they can be entirely substituted out in terms of
current and past events. This implies that the Muth and Lucas methods
are not entirely general (in particular it means that the forward root is
solved backwards and so appears in its inverse, unstable, form), but they
are useful for the wide class of models where this assumption is valid.

Let us focus on the solution for p;, since that for y; follows easily
enough. § = y* and 5 = 7 —y* by setting E,_1p; = Er_1pr+1 = pr =P
and y; = ¥ in the model.

Having found the equilibrium in terms of the constants, we now drop
these from the model and define (p;, y;) in deviations from equilibrium.
The model can now be written in terms of p; as:

1

1
ee =1+ 2)pt + (« 5

5 VE—1pt — aEy_1piia (47)

Using (45):

o0
bt ZZ TtEt—q (48)
1=0

Ei_1ps :Z Ti€t—i (49)
i=1
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o0 o0
Piy1 = E Ti€t—i—1 = g Tit1Et—i (50)
=0 =1

Ei_1pi+1 :Z Tit1€¢—i (51)

i=1

Equations (49) and (51) follow from (48) and (50) respectively because
Ei 16t = Ei_16441 = 0.
Substituting (48)—(51) into (47):

1 oo 1 oo o0
Et — <1 + 5) Z TiEt—i — <Oé - S) Z Ti€t—i + Z Ti+1Et—i — 0
=0 i=1 i=1
(52)

Each &;_; can be any number so that (52) can hold if and only if the
set of the coefficients on €, on €,_1, on €;_5 ...., each individually sums
to zero. These sets must satisfy:

(on &)1 — (1 - %) =0 (53)

(on Et_i,l = 1) — (1 + Oé)ﬂ'i +amiy1 =0 (54)

Equation (54) is a homogeneous, difference equation in m; with the
same root as (27) above, and an analogous solution:

1+« i1 .
T = T1 12
( ) (i>1) (55)

«

Note that the forward root here is being ‘driven backwards’ artificially.
In (55) again we see that there are an infinity of solutions chosen here by
selecting 7 arbitrarily and that only one is stable, namely that where
w1 = 0, which of course stops the forward root operating backwards in
an unstable manner.

Invoking the stability condition we set 71 = 0, so that 7; =0 (i > 1).

From (53) we obtain 7y = %. Our solution in p; is therefore:

Dt = m— y* + <%> €¢ (56)
as before.

The Muth method becomes unwieldy for larger models where there
are several errors like ¢; for each of which a sequence of coefficients must
be determined, but it is often convenient for small illustrative models,
and we shall use it frequently for this purpose.



60 Models of the Economy

Lucas Method of Undetermined Coefficients

A variant of the Muth method of undetermined coefficients has occa-
sionally been used (for example, Barro, 1976; Lucas, 1972a) whereby the
solution for the endogenous variables, instead of being written in terms
of the constants and the errors, is written in terms of the ‘state’ variables,
that is, current and past values of the exogenous variables (including the
error terms of the model equations) and past values of the endogenous
variables. (It therefore is like the Muth method in assuming that ex-
pected future exogenous variables can be reduced to current and past
events; it, too, therefore drives the forward root backwards.) The need
to include all the state variables can make this method unnecessarily
complicated, as the example of this model shows.
Write the solution for p, (on which we focus) as

Pt = M€ + MaPy—1 + T3Ye—1 + Tace—1 + 5T + Tey™ (57)
We have:

1
m+er =p+ g(pt —Eiap) +y" — o(Er—1pey1 — Er—1py) (58)

Use (57) to generate E;_1p;, Er—1pry1 and substitute for these and
pt in (58), obtaining:

— _ |
M+ €y = M€ + MoPr—1 + M3Yr—1 + T4€r—1 + T5M + MY~ + 3(771515)

+y" —al(re — 1)(T2pi—1 + T3Ys—1 + Ta€r—1 + 75T + Tey™)
+m3y” +msm 4+ mey']  (59)
We used F;_1y; = y* in this, from the Phillips curve. Now by the

same argument as with the Muth method, the terms in each of the state
variables must equate. So we have:

(terms in ): 1 = + 5™

yielding:
1 6
TTTEI T 14s (60)
(terms in p;—1) 0 = w1y — a(me — 1)me = ma(l + @) — ame (61)

from which there are two solutions for w5 = 0, lfTO‘ Of these, lfTO‘
(the forward root again being artificially driven backwards) violates the
stability condition and is ruled out, leaving 7o = 0.
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(terms in y;—1) 0 = w3 — a(me — 1)73, implying 73 = 0 (53)

(terms in g;,_1) 0 = w4 — a(my — 1)my, implying 74 =0 (54)

Given these solutions, the terms in m and y* yield 5= 1, mg =
—1. Hence we have obtained, if by a somewhat round-about route, the
solution for p;; that for y; follows simply using the Phillips curve.

Clearly the method of solution is a matter purely of convenience. We
have discussed several methods, all of which have been extensively used
according to the problem and tastes of the problem solver. All have
their advantages and disadvantages and are worth the reader’s while to
understand.

THE TECHNIQUES IN APPLICATION: A MORE
COMPLICATED EXAMPLE

We now use a slightly more elaborate REFV model (with a unique stable
solution) to illustrate further the application of these solution methods.
The model here is ‘fully dynamic’, that is to say it returns to its steady
state gradually after a shock rather than immediately as our previous
models did. As such it is a prototype for many macro models used in
practical analysis.

We retain our Cagan-style money demand equation but date the
expectations at ¢ for convenience in the money market?. We also retain
our simple money supply equation (9); but we allow for adjustment
costs in the response of output to unexpected price changes (our Phillips
curve). So now we have a new model:

my = pt +ys — a(Epry1 —pi) (> 0) (62)

« 1 . 1(ps — E,_
Yo~y = g(pt —Eeap) + p(ye—1 —y7) = EW (63)
my =M+ & (64)

where we have used the backward lag operator, L, in rewriting (63) to
facilitate our subsequent operations.

2This dating of expectations implies that agents in the money and bonds markets
have access to all current information whereas those in the goods and labour markets
only have access to last period’s — not a set-up with much theoretical appeal. Exactly
what information which agents have is discussed carefully below (especially in the
following chapters, 3 and 4). Here we make this assumption merely to illustrate our
techniques with less complication.
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Basic Method

Let us apply our adjusted method, focusing on the solution for p;. Step
1 gives, substituting for (63) and (64) into (62):

_ . 1(p— Er
m+e=(1+a)p+y" + g(ml_—zgpt) —aEpi (65)

Rearranging and multiplying through by (1 — pL) yields:

1
(m—y" )1 —p)+e —pei—1 = —aEipi1 + (1 + o+ 5) Pt +

1
(au - 5) Eyipe — (p+ap)pi—1 (66)

Notice that the lag of E;p;41 is E;_1p; and not, for example, p; or
Ei_1p;.

We now move to step (2'), where we must find Eypiq1 and E;_1pgy1.
Accordingly, first we take expectations at ¢ = 1 to obtain:

M —y" )1 — p) — per—1 =
—aBiap1 + (1 +a+ap)Bap — (n+ap)pi—1 - (67)

and:

(m—y")(1—p) —al 1piriv1 + (L +a+ap)Ey 1piy
—(u+ap)Ey_1pryi1 (0 = 1) (68)

The solution of (68) is:

— 1+a)’ i (s
By 1piyi = (m -y ) + Ay <Ta> + Asp (Z > 0) (69)

where A and B are determined by the initial values Fi_1p:i+1, Er—1p:.
However, we have only one equation (67), to determine both F;_1p:i1
and F;_1p¢, so that there is an infinity of paths, all but one unstable (this
situation of a unique stable path from which movement in any direction
is unstable is known as the ‘saddlepath’ property). Impose the stability
condition, then set A; = 0 with the result that Ay = Ey_1p; — (M — y*)
so defining;:

Ei apry1i=m—y" + [Ei1ps — (M —y")|p (70)

We can now use (67) to solve for Fy_1p; as:

Eiape=m -y )1 —p) - €t-1+ Hpr1 (71)

1
14+«
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We can infer immediately from (71) that:

. 1
Eiprar = (M—y*)(1—p) — 72
w1 = (M —y*)(1— p) 1+a5t+ﬂpt (72)
This can be verified by leading (67) one period, taking expectations at
t, and repeating the operations in (68) to (71) but advanced one period.
We have now completed step 2’ and proceed to step 3, substituting
E;_1p; and Eyps4q from (71) and (72) into (66), to obtain after collecting

terms:

l+a—ap
(I+a)(l+a—ap+3)

. 1
= (m—y*)(1—p)— - B
pe=(Mm—y*)(1—p) 1+a€t 1+ ppe—1+ €t

(73)

This model and its solution are illustrated in Figure 2.5. The initial
shock to demand, ¢;, shifts the aggregate demand curve out to DD along
the SS, short-run Phillips, curve. The position of DD takes account of
FEypiy1, the expected value of next period’s price level. This expectation
solution is found by locating the unique stable path (the analogue of the
algebra in equations (69) to (71)). The D*D* curve shows the combina-
tions of (p,y) for which prices are not expected to change: the equation
of the LM curve (62) is written as E;Apyy 41 = %(m— Eipi i — By
(¢ 2 1). The S§*S* curve shows the combinations of (p,y) for which
output is not expected to change: the Phillips curve, (63), is written as
BNy = (= 1)(Bryers —y*) (12 1).

The arrows show the implied motion of (p,y) where they take val-
ues off these curves; the line with arrows pointing along it towards the
steady-state equilibrium at the intersection of D*D* and S*S*, is the
saddlepath, the unique stable solution. Eip;y; jumps from p; on to this
line at the point where it intersects S’S’, the expected vertical Phillips
curve given by the gradual adjustment of y; back to y*; going through
this point accordingly in an aggregate demand curve, D' D’, whose equa-
tion is M — Eyye11 + aFipry2 = (1 + @) Eipry1. D'D’ looks forward to
FEpryo which can be found in a similar way as the point on the sad-
dlepath intersected by Eiyii2. Accordingly (p,y) are expected to con-
verge at the rate p on (T — y*, y*) along this saddlepath, after their
initial shock to (p¢, yi).

The basic method using the Sargent forward operator approach

We proceed as above up to (68). Sargent now rewrites (68) as:
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N

Pt -~ N

15N -y*+y*
D A (Ve =AlyeyT+y*)
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| e e P F

D*(M=Pta1+Yi1)
Yiri

g*

Figure 2.5: The solution of a fully dynamic model when a shock, e, disturbs
equilibrium

L m—y)1—p) = {Bl - <1 - +u) + (17;7&) uB} Ey1prsi

(%

_ 1+«
= (B b o >(1MB)Et—1Pt+i

1+«

= {1 _ <1ia> Bl] (1= puB)E;_1prs (i >1) (74)

Now we can write (74) as:

( 1 ) (m—y )1 —p)

=1 —uB)Ei_1pryi (i=1)  (75)

1 _
+« (1 _ lJrLozB 1)
If we impose stability, this yields setting ¢ = 1:
By apiyr = pEyape + (M —y")(1 — p) (76)

which yields the rest of our solution as before.

The Sargent method thus represents a convenient extension of oper-
ator techniques to REFV models. ‘Backward roots’ (entering because of
lagged adjustment) are projected backwards, that is, kept in the form
1/(1 — uB), ‘forward roots’ (entering via expected future variables) are

projected forwards, that is, transformed to 1/ (1 — H_LOCB*I); this pro-

cedure, under the stability condition, gives us the same result as before,
but in a very compact manner.
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Sargent’s method is particularly useful for dealing with delayed sho-
cks which are nevertheless anticipated from a date before they occur;
so far we have considered only contemporaneous, unanticipated shocks.
But, for example, it may become known now that the government plans
to raise the money supply sharply in two years’ time for some reason to
do with anticipated public finance difficulties.

To allow for such a possibility let us in (64) allow ¢ to be a shock
which may be related to previous events, whereas before it was assumed
to be unrelated. Now moving through the previous steps of our solution,
we find that (66) is the same. Taking expectations at ¢ — 1, however,
yields:

(Mm—y* )1 —p) + E1er — pe—1 = —aBi_ 1D
+ (1 +a+apu)Biap; — (p+op)pi—1 (77)
and so:
(Mm—y" )1 —p)+ Er6i4i — pEr—1604i1 = —aEy _1piipr +
(I+a+ap)Eipist — (p+ap)E_aprrio1 (621)  (78)

Sargent’s (74) now becomes:

1
(1 —pB)Ei16t4i =

«

2y - p)

(1 1 ZQB> (1 - uB)B'Eyiprs (i21) (79)
And (75):

1 1—uB
l+al—(HE2B)-
=1 —uB)Ei1pey (i >1) (80)
The left-hand side of this can be written:

(m—y*)(1—p)+ I Ey_1e14s

o0

__ « 1
(m—y") (1 —p)+ TTa Jgo (/14 ) (Bi16vivj — pE1€t1i-145)

which implies for the case of ¢ = 1 the solution for:
By apiyr = pEape+(m—y*)(1 —p) +1/(1+ )

Y la/(L+ ) (Broreryjn — nBireer;)  (81)
=0
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We can also use (77) to solve for F;_1p; as:

E,_ =(m—-y*")(1 — E,_ — _ _
—1pe = (M —y")( M)+1+a t—1E¢ 1+a5t 1+ pupi—1 +
1 e a J+1
T a Z <1+a) (Bi—1€t4j11 — pEi18ey5)  (82)

Jj=0

Now we see that the future shocks foreseen at ¢t — 1 for ¢ + j enter
the expected solution for p; with a coefficient of

[ ) -

Pt A

L,

saddlepath

m >
y Yt

Shock g, occurs at t=3, anticipated at t=0. Numbers show the solution at each date, =0,
1, ..

Figure 2.6: The effect of an unanticipated shock

Hence the forward root is ‘thrown forwards’, acting as a weight on
the foreseen shock which diminishes the further ahead the shock occurs.
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This is illustrated in Figure 2.6 for a positive demand shock antic-
ipated at time ¢ for three periods ahead. At ¢t (= 0 on the figure) the
expected future shock to demand raises prices unexpectedly, increases
supply (a movement along SS), and stimulates demand (a shift in DD)
because the rise in future prices relative to present prices reduces the de-
mand for money, so increasing money expenditure. Demand continues
to rise in t = 1 and ¢ = 2 because future prices exceed current prices by
a greater amount in £ = 1 than t = 0 and in ¢ = 2 than in ¢ = 1; this
is dictated by the dynamics (shown by the phase arrows) in that part
of Figure 2.6. At ¢t = 3, the shock occurs and increases demand further.
Prices in ¢t = 4 are expected to drop to exactly where they would have
been (along the saddlepath) had the original shock to demand been an
unanticipated one at ¢ = 0 sufficient to stimulate output by the same
amount as the anticipated shock did; so in ¢ = 3, there are conflicting
forces on demand, the positive effect of the ¢ = 3 shock more than offset-
ting the effect from the expected future decline in prices. It is a useful
exercise to assign numbers to the parameters and plot the resulting path
as in figure 2.6.

Muth method

The Muth method, though not particularly intuitive, is probably the
easiest to apply for this model. The general solution for p will be as
before

pt=Dp+ Z Ti€t—i (83)
i=0
and it remains that:
p=m—y" (84)

Box 2.1

The algebra for the illustration works out as follows if for convenience
we set Etflpt =Dt ] =Yi—1 =E¢—] = Eg =M = y* =0:

o
= |—|F i 65
Yz [1+a—|—%] De41 from (65)
1 « «
Eipiyr = (l—i——a)(l n a)2(1 —h7 n a)€t+3 + pp; from (82)

led by one period and taking expectations at time t so that:

Pt = qry and Eypi1 = (1 + pg)xe
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where
1 a4 Q
e _ - 1_
Ty (1+a)(1+a) ( M1+a)5t+37
B o
e 1+a—au+%
Again from (82)
l+a l1+a
Eipris = = [u+p’q+ Jt
1+«
Eiprys = plipiia+ o Ty =
l1+a +
(12 + 1P q + p( )+ ( )%
E = uEpiis —
tPt+4 MLt Pr4-3 < +a> Et+3
3 u+uq+u(“) (L£2)®—
- (b2)? (e ) "
1+a—ap
Eiprys = plipiya

Both Eip;1+4 and Eyp.ys5 are negative.

We now substitute in (66) dropping constants to obtain the identities
in the &;_; from:

£t — HEL— 1——azwz+1€t 1+<1+a+ )Zwat i+

=0

1 o0
(a,u — 5) Z Ter—i — (1 + ap) Z Ti-1€0-1 (85)
i=1

i=1
The identities emerge as

() 1= —am + (1 Fa+t %) o (86)

(€-1): —p=—am+(I+atapm — (p+ap)m  (87)

(t—i,i22): 0=—amp+(1+a+ap)m — (a+au)mi-r  (88)
Applying the stability condition to the solution of (88):

i—1
T = A1 (1_;&) + Agui_l (Z 2 2) (89)
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sets A =0, so that:
T =mpu Tt (i >2) (90)
Substituting this into (86) and (87) gives:

l+a—ap
(I+a)(1+a+t—ap

Ty =

—p
SA+a)(1+a+1—ap)

m =

We can easily verify that this is the solution arrived at previously.

A MORE GENERAL WAY OF LOOKING AT AN
REFV MODEL

We have been considering models with exogenous (‘forcing’) processes
— here the money supply — that consist of a constant and a current
shock. For most of the time we have assumed that the shock could
not be predicted; here the unstable root was ruled out by our terminal
condition. Then we looked at the case where one period’s shock was
known some periods in advance; here we showed that the unstable root
determines how this shock works back to affect the present — in effect
the root is ‘thrown forward’ and becomes stable when working backwards
from the future. It is time to generalise the solution method we have
been using to any sort of exogenous process.

To illustrate such a general method we take a variant of our earlier
models:

my = pe + Y — (E—1p—1 — Er_1py) (93)

Yy =y +6(pr — Er—1pe) + i1(ye—1 — y*) (94)

which will be recognised as a Cagan-style money demand function with
inflation expectations dated at ¢ — 1 and a New Classical supply curve
with persistence. Now let m; be an exogenous process of a completely
general sort: each period there is a new realization of m; and a new set of
Eymyyi(i > 1). We will make no restrictions on how this set (my, Eit;)
changes at each t.

Consider the expectation at ¢ — 1 of this model:

(6%
1+«

B ymy = (14 «) {1 - B_l} Ei 1pi + Er 1y (95)
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(pt—1 — Br_1pe—1)

Ei 1y = y* + pd 96
T D) %)
Let pr — Ey_1p: = n,; we can easily solve for n, as
1
1_—1—6(mt — Eamy) =, (97)

by taking deviations from expected values across the model; this is a
function of the purely unpredictable element (the innovation) in m;.

Returning to our model above we can write the solution for E;_1p;
as:

> _ Ey_1my o
t—1Pt (1+a)(17ﬁ371) Yy
pon_y
(1+a) (1 - H%B*) (1 - ulL)
1 > a ‘
1t a Z Tra (Biimyyi — Ev_1yeyq)  (98)
i=0
where

oo
Beayeri =y +pu8 Y pwny =y +p " (e —y7);
J=1
note that the expectations of future innovations are by definition zero.

Thus our solution automatically throws the term in a forwards (be-
cause it relates the present to expected future events) and the term in
i backwards (because it related the present and the expected future to
past events). We can see that the general solution has a forward and a
backward component, for each of which one of the roots of the model is
appropriate.

The model requires, for stability, that both | = [< 1 and | p [< 1;
both of these would be imposed as a matter of specification normally.
Looking back over our previous discussion of uniqueness and will o’ the
wisp variables, we can also see that in these conditions the terminal
condition will both ensure uniqueness and rule out bubbles.

Forward and backward roots: an examination

We can see that in the model we have been using — with slight differences
in dating of the expectations — we have obtained an equation of the
form:

w=[aBT + I+ atap) — (L+Q)uB] Beipevi - (99)
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If this is solved backwards we write it as:

= —a {1 _ <IZO‘ +u>)B _ (1 ZO‘))uBZ} BB 1pi (100)

The roots are then plainly 12 and p. These we recognise as the

(0%
forward root, H—La’ solved backwards and so inverted, and the backward
root, p.

If the difference equation is solved forwards we write it as:

T [1 - ( S 1) B - ( < ) 13—2} BE,_1piss

l1+a p 1+a/ p
(101)

The roots are then + and 145 Which we recognise as the forward root
solved forwards and the backward root, u, solved forwards and so in-
verted.

Plainly to obtain the appropriate solution as permitted by the ter-
minal condition, we solve the forward root forwards and the backward
root backwards as we have seen, obtaining:

@

v (1o

Equivalently we can obtain this appropriate solution by factorising

aB_1> (1= pB)Et_1pi+ (102)

—aB '+ (I+a+au)— (1+a)uB =ko(l — kB~ (1 — ke B) =
— kok1 B! 4+ ko(1 + k1ko) — koko B (103)
where the undetermined coefficients are given by
koki = a; ko(1+ k1k2) =14 o+ ap; koka = p(l + ) (104)
Solving (96) for ky yields:

9 o 1 @ 1
— - - - = 1
B () b (1) 3 =0 (105)

(the characteristic equation of the model solved forward) whence k1 =
a 1
Tra o
Alternatively solve (104) for ks to obtain:
l1+a l1+a
B = (== ke — (——)u =0 (106)

(the characteristic equation solved backwards) yielding ko = %7 L.
To find the stable solution we select the stable values of each root,
forward (kq), and backward (kz).
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STABILITY PROBLEMS IN RATIONAL EXPECTA-
TIONS MODELS

When we considered adaptive expectations models we were concerned
about whether they were stable or not. Clearly these were backward-
looking models and this question amounted to whether the roots, all of
them backward, were stable; if they were not, then we would naturally
assume the specification was wrong, since we look for models that are
stable, reflecting what we take to be a stable reality (if it were not,
it should have exploded — yet it hasn’t). With rational expectations
models stability, as we have seen, involves in the two-root case both
the forward and backward roots being stable when driven respectively
forwards and backwards. If either is unstable, there is instability (either
expected future events produce unstable current effects or past events
produce unstable expected future effects). Let us consider them in turn:
first, the case where the forward root is unstable — commonly known as
the uniqueness problem.

The Uniqueness Problem: the unstable forward root

When the forward root is unstable, it is easiest to see what is happening
in the simple model of equations (22), (8) and (9) at the beginning of
the section on REFV models. Let us suppose that for some reason « in
our model is negative and < —0.5. Suppose, for example, that there is a
rigid relationship of money to average transactions in a period; and that
precautionary transactions demand is positively related to the rate of
inflation, because of the irregularity of price changes and the correlation
between the size of these changes when they occur and the inflation rate
(for example, I go to the doctor and find he had just put up his price by
30 per cent). This is implausible but not impossible.

Here we have, taking expectations at ¢ — 1, looking at the solution

forwards:
m—y* « 1
=(1- B E_ 107
l1+a < l+a > t-1Pt (107)
Plainly, the forward sum(m — y*)/ (1 — 1%}3*) does not converge.
Equally if we look at the equation backwards we have:
m—y* 1+a
oy o (1 - B> B 1pe (108)
! Q@

from which it follows that:

. L+a\' .
Ei piri=m—y "+ A - (i>1) (109)
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where A = E;_1p; — (0 — y*)

This has a multiplicity of stable paths since |1fT°‘| < 1 : there is
no unique stable path, hence the ‘non-uniqueness’ label of this case.
Previously we used the stability condition to choose the unique stable
path. However, now all the paths in (109) are stable, as shown in Figures
2.7 and 2.8, because we have rigged it so that ‘%| < 1. The stability
condition is incapable of selecting a unique solution, therefore. This
problem was first pointed out by Taylor (1977); and so far as we know
there is nothing to rule out the possibility that REFV macroeconomic
models will have an infinity of stable paths.

A

Pt S

D* 'most stable' point for E;_¢p;

D*

y* Yt

Figure 2.7: The uniquness problem in (pt, y:) space

There is no generally agreed procedure among those using REFV
models for this problem, other than to avoid using the ones with this
property. One solution has, however, has been suggested by Minford et
al. (1979) — to impose a terminal condition as we do in a normal model.
Needless to say any ‘solution’ must somehow do violence to the model
as specified since it is literally unstable. However, the economy may be,
for some peculiar but genuine reason (as exemplified above), like this at
least for a while: then could the terminal condition remove undesirable
price level instability, as it did in the same model in its normal set-up?
It turns out that it does indeed impose a unique stable solution. Thus
we set:

By _1pien = By 1piyN+1 (110)
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A
Et1Pt+i

time
Figure 2.8: The uniqueness problem in (p,t) space
Using the forward solution we find that this implies
m—y* o
=FE;_ ——FE
1+ t—1Pt+N 1ta t—1Dt+N+1
whence EtflthrN =m — y*
Via backwards recursion we obtain:
1+a m—y*
B - By =
t—1Pt+N—1 t—1Pt+N Tta
whence E;_1p ., =m —y* (1 > 0).
Using the backwards solution, our terminal solution implies :
N+1 N
1 1
A<ﬁ> +m—y*=A< +O‘> rm ey
«@ o

which is strictly valid only when A = 0. Thus also:

Ei_1piri =m —y*(i = 0)

(111)

(112)

(113)

Note that just as in the case of our normal model, a bubble can be

14

[0

added to this solution, namely (

)iE;_124+;, but in this case it is an
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‘imploding bubble’. The terminal condition rules this out here, as it did
the exploding bubble of our normal case. The justification for such a
condition might seem strained in this case. Yet upon consideration it is
equally justifiable. Non-uniqueness (forward instability and imploding
bubbles) must cause quite as serious problems as backwards instability
and exploding bubbles. For the endogenous variables may in each pe-
riod jump by unpredictably large (strictly unbounded) amounts; even
though they will subsequently be expected to return to equilibrium, in
all subsequent periods there will be shocks with infinite variance. Such
uncertainty would be likely to provoke changes in behaviour sufficient to
create an incentive for the money issuer to make a commitment such as
is set out in the terminal condition. This commitment would then limit
the uncertainty as we have seen, to that associated with the ‘most stable’
path — a result much in the spirit of a suggestion by Taylor (1977) that
the least variance path will be selected by ‘collective rationality’®.

Let us now apply this same approach to the more complicated model
we used above:

my = pr + Yt — (Er—1pi41 — Er_1pr) (114)
ye =y +6(pr — Evape) + 1(yi—1 — y*) (115)
my = M+ &¢ (116)

This yields a reduction in terms of prices and expected prices of:

(M —y*)(1 — p) + e — peg—1 = pr — ppe—1 — @B _1piy1 + apEy_opy
+6(pt — Eroape) + aEy_apy — apEi_aopi—1 (117)

Let us assume, as we shall see we must, that |1-ng04| >~ |p|. First solve

the model forwards and impose the terminal condition to obtain:
Erapern =m =y — N (g1 — ") (118)

The backwards recursion proceeds:

a 1
E, I N N - *
Trat 1Pt+N + 1+a[m Y 1 (Ye—1 —y")]

(119)

Ei_1pien—1=

3There have been other suggestions, like Taylor’s, as to how society would select
such a path. Peel (1981) argues that the monetary authorities will select a feedback
rule generating uniqueness; however, it is not clear that they do select such rules in
practice. McCallum (1983) argues that the solution chosen, when framed according
to the Lucas undetermined coefficients method, will contain only the minimum set of
state variables (his MSV procedure). This, we would argue, would be a result of the
sort of government commitment we refer to. In practical terms MSV and terminal
conditions deliver the same solution.
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ultimately reaching;:

B apr=m—y" -
N 1 o VN (e \VT
I T G
1+« 1+« L ]

w(ye—1 —y*) (120)

which, letting N be large (where for convergence |2£2| - |p)

i a(ll — et =) (121)

*

~m—y

The same result is obtained using the backward solution; take expec-
tations of (117) at ¢t — 2 to obtain:

#(m —y") = Ei_opii1 — (11_704 + ) Ey_ops +
( s a)Et—2pt—1 (122)
whose solution is:
Ey oppyi=m—y* + Al(ngTa)i“ + Aot (i 1) (123)

with initial values F;_op; and Ei_ops_1.

The terminal condition forces the constant on the root with the high-

est modulus (that is, 1£2) to be zero, whence:

Byoprvi =M —y" + [Epopr1 — (@ —y )™ (120)  (124)
whence also:
B apirivi =M —y* + [EBape — (M —y")p' ™ (i 20) (125)
Substitute for E;_1p;41 from (125) into (114), take expectations at
t — 1 of (114)—(116), and reduce to obtain:
(m—y")
= Eiape+ w(y—1 —y") — (1 — p) (M — ") + pEi—1pe]  (126)

whence:

Eiapi=m—y* — )u(yt—l —y") (127)

1+a(l—p

as with the forward solution.
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There is no solution if [1£%| < |u[. (123) now sets Ay = 0 which
gives:

l1+a,,__ N l+a
)@ —y) +

Ei 1ipiy1=(1- Ei_1p:

Repeating the operations which gave (127), we now find that:

E_1p = g(yt—l —y)
implying:
Ny o M .
Et—lpt+1 = E(Et—lyt -y ) = E(yt—l -y )

When this is substituted again into (114)—(116) we obtain:

T — y* 1—
By ipr = y* uh

=y 128
T o Wi y*) (128)

There is therefore no solution for E;_1p; by contradiction. (If [1£2|
||, the terminal condition cannot impose a unique solution and (120)
does not converge; so again there is no solution.)

What we have seen is that provided £ is not too unstable (ie.

provided that ‘ﬁ) =< )H), the terminal condition will force a stable

solution and rule out implosive bubbles.
The case of an unstable backward root

We can illustrate this case with the model we have just used. Here |p| > 1
in which case output is expected to explode — clearly an inadmissible
model in general since the backward sums de;/ [(1 + §)(1 — pL)] do not
converge.

In this case, too, however, there is a reason for seeking some sort of a
solution. Such a model cannot be ruled out for an episode (for example
moving between two stable models in a general non-linear model —
as discussed in the supply-side chapter a propos of virtuous and vicious
circles and more generally in the Time-Series Annex). We therefore need
to face up to the problems for inflation and monetary policy in such an
episode. We have justified our terminal condition as a restriction placed
on behaviour by the monetary authorities to prevent undesirable price
outcomes. So here we ask if a terminal condition will produce acceptable
price behaviour.

We can in fact simply use our workings in the previous section, while
noting here that a/(1 + o) < 1. Again we require for a solution that
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(1+a)/a > |p|: that is, that here the backward root not be too unstable.
Thus if a/(1 + «) = 1 (our last case of an unstable forward root) then
(1+a)/a <1 < |u| and so there can be no solution with a terminal
condition.

However with (1 + «)/« > |u| we obtain the same solution as above,
namely:

41

. 1 “ .
Ei apipiv =M —y" —p )(yt—l —y*) (i=0) (129)

1+a(l—p

This shows clearly that a terminal condition will solve for a price
path, that it will be unique, but that it will be unstable matching the
instability in output — we might label this as ‘controlled price instabil-

ity’.

What we have shown about models with stability problems is that, by
introducing a terminal condition justified by monetary policy reactions,
we will in many cases — where the instability is not too severe — find
unique solutions: if the instability is too severe, there will be no solution
at all under a terminal condition. In our particular model with two
roots, ‘not too severe’ means (1 + a)/a > |u| . This implies that if
both forward and backward roots are unstable there is no solution, since
(14+a)/a <1 < |u|. More general models with more roots have to be
examined case by case if they have instability of either sort, using the
analytical techniques we have described in this chapter.

CONCLUSIONS

This has been a chapter designed to equip the reader with the tech-
niques to solve rational expectations models in a manner useful to ap-
plied work*. We have shown how to use four main methods of solution:
a basic method, both with the Sargent forward operator and with the
model solved backwards, and the Muth and Lucas undetermined coef-
ficients methods. We have also discussed the criterion for choosing a
unique solution in these models, free of extraneous or ‘will o’ the wisp’
variables. The criterion we propose, namely that terminal conditions
are imposed on the model (some external ‘transversality condition’), is
widely accepted in practice The effect of this condition is to ensure a
stable path free of extraneous variables or bubbles. Practical methods

4There are a number of descriptions of solution methods available in the literature
(see, e.g., Shiller 1978; and the useful Aoki and Canzoneri, 1979). For more complex
applications than those considered in this chapter, the reader will invariably use
numerical methods on the computer.
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of solution used vary (see for example Wallis et al., 1985). However all
of them are approximations to the analytic bubble-free solution we have
been setting out above.
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APPENDIX 2A: WHEN ADAPTIVE
EXPECTATIONS ARE RATIONAL

Suppose that a series is generated by the ARIMA(O, 1, 1) process (see
time-series annex at the end of the book):
Yt = Yt—1 + Ut — jus—1 (1)
where u; is a Gaussian white noise process and j a positive constant.
The rational expectation F;_qy; of (1) is given by:
Ei 1yt = yr—1 — jur—1 (2)
From (1):
Y — Y1 = (1 —jL)uy (3)
where L is the lag operator.
Substituting for u;—; from (3) into (2) we obtain:

o Yt—1 — Y2
E _ = 1 — —_—
-1yt = Yr—1 — J( 1— L )
so that:
Ei 1y —JEioyi—1 = Y—1 — jYi—2 — §(Yt—1 — Y1—2) (4)

Subtracting F;_oy;—1 from both sides of (4) and rearranging we ob-

tain
Byt — Eroyr—1 = w{yt—1 — Er—2yt-—1} (5)
where Kk =1—j

Notice also from (5) that:

RYt—1 1—-A -1
Erys = Yi _ ( )Yt
(1-(01-kr)L) (1-AL)
=(1—=ANA+AN+NL2+ N34 Py (6)
where A =1 — K so that A = j.

Equation (5) will be recognised as an adaptive expectations process.
In other words if a variable is described by an ARIMA(0, 1, 1) process
then adaptive expectations can be rational expectations if the coefficient
of adaptation is equal to 1 — j.

More generally we should note that a variety of mechanistic forms of
expectation formation can be rational in a particular model structure.
For instance regressive expectations are rational in the Dornbusch over-
shooting model considered in Chapter 14. The point is, of course, that
these mechanistic expectations mechanisms will, in general, cease to be
rational if policy regimes change.

Two interesting examples where adaptive expectations are rational
are in models proposed by Sargent and Wallace (1973) and Muth (1961).
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The Sargent—Wallace model of a hyperinflation

The demand for real balances has the form:

log(%)zaﬂf—i—'y}/—l—gp—i—ut a<0, v>0. (6)
where M is the demand for nominal balances (assumed equal to supply),
P is the price level, 7§ is the public’s expectation of future inflation, so
¢ = Eylog Pry1 — log P, is assumed known. Y is real income assumed
constant and w; is a stochastic error term with an average value of zero.
«, v and ¢ are parameters.

Taking the first difference of (6) we obtain

pe =T+ a(my = m_y) (7)

My
M;_

where p, = log ( 1) is the rate of change of the money supply and

m = log (Pf;) is the rate of inflation. It is assumed that u; —u;—1 =,

where 7, is a white noise error.
Adaptive expectations (here current expectations of future inflation)
can be written here as:
1—=Xm
e ( t
=— 8
Y (®)

Substituting (8) into (7) we obtain the solution for m; as:

{I+a(l=N]—=[A+all=N]L}m,
— (L= ALy — (1= AL)(L = Lyuy  (9)

so that the current inflation rate is determined by distributed lags of
changes in the money supply and of the disturbance in the demand
function.

To provide a rationalization of how adaptive expectations could have
the rationality property, suppose the rate of monetary expansion is gov-
erned by the process:

(1 — )\)71}

T0L + &4 (10)

Hy =

where ¢; is a white noise disturbance.
Substitute from (10) into (9) for u, to obtain

{A+al =N = A +all =N]L}m = (1= AL) [er = (ur — up—1)]
(11)
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Equation (11) can be rewritten as

A+al—=XN]AQ—-L)m = (1—AL) ey — (ug — ug—1)] (12)

1-L _ (1-\)L

Now =7 17~ so that (12) can be rewritten as:

(]. — )\)71'1571

7 A+l =N] " e - (u —wr)] (13)

T =
Recalling that u; —us—1 = 1, the rational expectation of (13) is given
by:

(1 — )\)ﬂ't_]
1—-AL

(1 — A)ﬂ't

Ei_m = T

implying that Eymypq = 7§ = (14)

In other words if the money supply process is (10) the adaptive ex-
pectations will be rational. The question is why should the money sup-
ply process follow (10) in a hyperinflation. It is typically assumed that
in a hyperinflation period the authorities print money to finance their
nominal expenditure, assuming the level of real government expenditure,
G, is constant. This assumption is captured in continuous time (where

= %) by:

or

In continuous time the demand for real balances is given by:
M
= F ()] (16)
so that substituting (16) into (15) gives

M G
M) i)

Assuming a unique solution to (17) a linear discrete-time approxima-
tion to (17) is given by

e = Ermipn + & (18)

where ¢; is assumed to be a white noise error term.
Assuming rational expectations (10) is equivalent with (18) (since

1-\)m
Etﬂ't—i—l = (I,X)Lt)-
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Consequently Sargent and Wallace have demonstated how adaptive
expectations can be rational in a hyperinflationary period.
We also note from (7) and (18) that

By + e =m +a(nf —m_q) + ¢, (19)
or
mp =Tt a(ny —7m_q) + o — e (20)

If expectations are adaptive:

e (1 — )\)7Tt
TTTIAL ®)
Substituting (8) into (20) for 7§, m¢_; we obtain
(].—A)?Tt - (1—)\)7'(',5
Y e W VA 2D
Simplifying (21) we obtain
T =71 == [(A+a(l = A) 71— AL)(ve)] (22)

where v; is the composite white noise error, v; = ¢, — &,
The process (22) is an ARIMA(0, 1, 1) as required for adaptive ex-
pectations of inflation to be rational.

Agricultural prices

The adaptive expectations assumption was widely employed in modelling
of agricultural markets (see Nerlove, 1958) since models embodying this
assumption were readily able to generate stable cyclical fluctuations.
It is useful to illustrate how an agricultural model embodying rational
expectations can also readily exhibit such fluctuations in price or how
price series for storable commodities can approximately follow a random
walk.

We employ the model of Muth (1961). We write the model as follows
(all means are put to zero for simplicity):

qf = —Bp: (23)

4 = vEi—1pr + w (24)
I = a(Epii1 — pr) (25)
g + ply = ¢} + pIi— (26)
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where ¢, ¢f are quantity demanded and supplied, respectively, p; is
price, I; is a speculative inventory and w; is an error process; «, (3, v and
p are constants. In this model it is assumed that storage of a commodity
is possible, and that storage, transactions costs and interest rates are
negligible. Consequently, a speculative inventory exists which depends
on the anticipated capital gain from holding the stock. The parameter
«, which measures the response of inventory demands to expected price
changes, is a function of the degree of risk aversion and the conditional
variance of prices in Muth’s exposition (also see Turnovsky, 1983).

Because storage can occur, equilibrium does not require that current
production (supply) equals current consumption demand. Equation (26)
represents the market equilibrium condition. A parameter p (= 1 or 0)
is introduced for analytical convenience: if storage occurs it is equal to
unity; otherwise if we set p = 0 and o = 0, we have the standard, no
storage, market clearing model.

Substitution of equations (23), (24) and (25) into (26) yields the
reduced form:

—Bpt + pa(Eipip1 — pe) = vYEr—1pe + pa(Ee_1pe — pe—1) +ue - (27)

Assume initially that u; is white noise. Solve this model under rational
expectations using the Lucas method of undetermined coefficients.
If we let

Pt = api—1 + by (28)

for p =1 we obtain by substitution

bZ;andazl—l-O.E)[@]—

ace — (a+ 0)
0'5{{”@}2_4} (29)

with 0 < a < 1.

The solution for prices (28) is of interest. Price exhibits serially cor-
related fluctuations around its mean value when u;, a variable which
represents exogenous influences, is random. The reason for this is that
inventories smooth out the effects of disturbances (shocks) to demand
or supply. Consider, for instance, an abnormally good harvest due to
favourable weather. In a market without storage, the additional sup-
ply will impact on market price in the current period. However with
an inventory demand, speculators will buy some of the harvest, since
the price in the future will, ceteris paribus, be greater than today, as
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weather returns to its normal expected value. This procedure will gen-
erally dampen price fluctuations. In addition the shock in the current
period will have an impact in future periods which in this context is an-
other way of saying that price movements will exhibit serial correlation.

Equation (28) also leads to another insight, as pointed out by Muth.
As the importance of inventory speculative demands dominate a market
relative to flow demands or supplies (as is likely over short periods of
time) and consequently « becomes large relative to 8 or 7 then (29)
implies that a will become close to one. Consequently, price will approx-
imate a random walk. This is an empirical feature often noted in price
series for storable commodities in high frequency data. We also note
that in this model the rational expectation of price is a fixed multiple of
last period’s price, though the coefficient is a function of the parameters
of the model. In general, rational price expectations will be a function
of lagged prices, though not in a mechanistic fixed fashion as occurs in
an adaptive expectations model. Muth, however, did use a special case
of the above model to illustrate how an adaptive expectations scheme
could be rational. If we let p = 0 and o = 0 we obtain the reduced form
of the market clearing model given by

—Bpt = vEt—1pt + wt (30)
Suppose that the error process is serially correlated so that
Ut = Up—1 + Ut (31)

where v; is white noise.
Consequently the rational expectation of (30) is given by

—(B+7)Ei—1pe = ur—1 (32)
If we lag (30) one period and substitute for u;_1 in (32) we obtain
—(B+7)Ei—1pt = —Ppi—1 — YEi—opi 1 (33)

Adding (8 + v)FEs—2pi—1 to the left- and right-hand side of (33) we
obtain after simplification the adaptive expectations scheme

Ey_1pt — Ei_opi—1 = 3 i 5 (pt—1 — Er—opi—1) (34)
Notice from (30) and (32) that
YUi—1 vL
_ = _ du=(1— 35
Obe= =g T < B+7)ut (35)

Differencing (35) and substituing for u; from (31) we obtain

pe—pe1=—pF" <1 - %) vy (36)
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so that as required prices follow an ARIMA(0, 1, 1) process.

Finally it is interesting to consider the properties of a simple adaptive
scheme when it is not rational. Consider the Wold decomposition for a
variable

Dt =D+ Z iUt (37)
i=0

where D, is the mean component which could include a deterministic
trend.

For ease of exposition consider the simplest adaptive expectation,
namely

o0
Py =pi—1 =D1t Z iUt —i (38)
i=0

The forecast error is given by

o0 o0
Pt — Er—1pe =Pyt Z miug — (D1t Z TiUi—;) (39)
i=0 i=0

In the case where P is a constant so D, = P,_;, we observe that the
adaptive forecast is unbiased, since the average value of the forecast error
is zero. However the forecast is inefficient in general since the right-hand
side of (39) being a function of past information implies that the forecast
error is correlated with information known at the time expectations were
formed. If p, contains a deterministic trend so that p, = a+bt, then p, —
Dy_1 = b so that from (39) the adaptive forecast will exhibit systematic
bias and inefficiency.



