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A wide range of problems arising in practical applications can be formulated as Mixed-Integer Nonlinear
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effective exact and heuristic algorithms are available.When non-convexities are present, however, things
becomemuch more difficult, since then even the continuous relaxation is a global optimization problem.
We survey the literature on non-convex MINLPs, discussing applications, algorithms, and software.
Special attention is paid to the case in which the objective and constraint functions are quadratic.
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1. Introduction

A Mixed-Integer Nonlinear Program (MINLP) is a problem of the
following form:

min

f 0(x, y) : f j(x, y) ≤ 0 (j = 1, . . . ,m), x ∈ Zn1

+ , y ∈ Rn2
+


,

∗ Corresponding author. Tel.: +1 3193350931.
E-mail addresses: samuel-burer@uiowa.edu (S. Burer),

A.N.Letchford@lancaster.ac.uk (A.N. Letchford).

1876-7354/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.sorms.2012.08.001
where n1 is the number of integer-constrained variables, n2 is the
number of continuous variables, m is the number of constraints,
and f j(x, y) for j = 0, 1, . . . ,m are arbitrary functions mapping
Zn1

+ × Rn2
+ to the reals.

MINLPs constitute a very general class of problems, containing
as special cases both Mixed-Integer Linear Programs or MILPs (ob-
tained when the functions f 0, . . . , f m are all linear) and Nonlinear
Programs or NLPs (obtained when n1 = 0). This generality enables
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one tomodel a verywide range of problems, but it comes at a price:
even very special kinds of MINLP usually turn out to be N P -hard.

It is useful to make a distinction between two kinds of MINLP.
If the functions f 0, . . . , f m are all convex, the MINLP is itself called
convex; otherwise it is called non-convex. Although both kinds of
MINLP are N P -hard in general, convexMINLPs are much easier to
solve than non-convex ones, in both theory and practice.

To see why, consider the continuous relaxation of an MINLP,
which is obtained by relaxing the integrality condition from x ∈

Zn
+

to x ∈ Rn
+
. In the convex case, the continuous relaxation is

itself convex, and therefore likely to be tractable, at least in theory.
A variety of quite effective exact solution methods for convex
MINLPs have been devised based on this fact. Examples include
generalized Benders’ decomposition [1], branch-and-bound [2],
outer approximation [3], LP/NLP-based branch-and-bound [4], the
extended cutting-plane method [5], branch-and-cut [6], and the
hybrid methods described in [7,8]. These methods are capable of
solving instances with hundreds or even thousands of variables.

By contrast, the continuous relaxation of a non-convex MINLP
is itself a global optimization problem, and therefore likely to be
N P -hard (see, e.g., [9,10]). In fact, the situation is worse than
this. Several simple cases of non-convex MINLPs, including the
case in which all functions are quadratic, all variables are integer
constrained, and the number of variables is fixed, are known to be
not only N P -hard, but even undecidable [11]. We refer the reader
to the excellent surveys [12,13] for details.

As it happens, all of the proofs that non-convex MINLPs can
be undecidable involve instances with an unbounded feasible
region. Fortunately, in practice, the feasible region is usually
bounded, either explicitly or implicitly. Nevertheless, the fact
remains that some relatively small non-convex MINLPs, with just
tens of variables, can cause existing methods to run into serious
difficulties.

Several good surveys on MINLPs are available, e.g., [14–17,
12,18]. They all cover the convex case, and some cover the
non-convex case. There is even research on the pseudo-convex
case [19], involving non-convex functions that nevertheless have
convex level sets. In this survey, on the other hand, we concentrate
on the non-convex case. Moreover, we pay particular attention to
a special case that has attracted a great deal of attention recently,
andwhich is also of interest to ourselves: namely, the case inwhich
all of the nonlinear functions involved are quadratic. We note that
the quadratic case actually subsumes the case when all functions
f j are polynomials, although there may be substantial overhead
when expressing a polynomial program as a quadratic one (see the
beginning of Section 5 for details).

The paper is structured as follows. In Section 2, we review
some applications of non-convex MINLPs. In Section 3, we review
the key ingredients of most exact methods, including convex
under-estimating functions, separable functions, factorization of
non-separable functions, and standard branching versus spatial
branching. In Section 4, we then show how these ingredients have
been used in a variety of exact and heuristic methods for general
non-convex MINLPs. Next, in Section 5, we cover the literature
on the quadratic and polynomial cases. In Section 6, we list some
of the available software packages, and, in Section 7, we end the
surveywith a fewbrief conclusions and topics of current and future
research.

2. Applications

Many important practical problems are naturally modeled as
non-convex MINLPs. We list a few examples here and recommend
the references provided for further details and even more
applications.

The field of chemical engineering gives rise to a plethora of
non-convex MINLPs. Indeed, some of the first and most influential
research in MINLPs has occurred in this field. For example,
Grossmann and Sargent [20] discuss the design of chemical plants
that use the same equipment ‘‘in differentways at different times’’.
Misener and Floudas [21] survey the so-called pooling problem,
which investigates how best to blend raw ingredients in pools
to form the desired output. Luyben and Floudas [22] analyze
the simultaneous design and control of a process, and Yee and
Grossmann [23] examine heat exchanger networks in which heat
from one process is used by another. See Floudas [24] and Misener
and Floudas [25] for comprehensive lists of references of MINLPs
arising in chemical engineering.

Another important source of non-convex MINLPs is network
design. This includes, for example, water [26], gas [27], energy [28],
and transportation [29] networks.

Non-convex MINLPs arise in other areas of engineering as
well. These include avoiding trim-loss in the paper industry [30],
airplane boarding [31], oil-spill response planning [32], ethanol
supply chains [33], concrete structure design [34], and load-
bearing thermal insulation systems [35]. There are also medical
applications, such as seizure prediction [36].

Adams and Sherali [37] and Freire et al. [38] discuss applications
of MINLPs with non-convex bilinear objective functions in
production planning, facility location, distribution, and marketing.

Finally, many standard and well-studied optimization prob-
lems, each with its own selection of applications, can also be
viewed quite naturally as non-convex MINLPs. These include,
for example, maximum cut (or binary quadratic programming
(QP)) and its variants [39–41], clustering [42], non-convex QP
with binary variables [43], quadratically constrained QP [44], the
quadratic traveling salesman problem (TSP) [45], TSP with neigh-
borhoods [46], and polynomial optimization [47].

3. Key concepts

In this section, some key concepts are presented, which
together form themain ingredients of all existing exact algorithms
(and some heuristics) for non-convex MINLPs.

3.1. Under- and over-estimators

As mentioned above, even solving the continuous relaxation
of a non-convex MINLP is unlikely to be easy. For this reason, a
further relaxation step is usual. One way to do this is to replace
each non-convex function f j(x, y) with a convex under-estimating
function, i.e., a convex function g j(x, y) such that g j(x, y) ≤ f j(x, y)
for all (x, y) in the domain of interest. Another way is to define
a new variable, say z j, which acts as a place holder for f j(x, y),
and to add constraints which force z j to be approximately equal
to f j(x, y). In this latter approach, one adds constraints of the form
z j ≥ g j(x, y), where g j(x, y) is again a convex under-estimator.
One can also add constraints of the form z j ≤ hj(x, y), where
hj(x, y) is a concave over-estimating function. If one wishes to solve
the convex relaxation using an LP solver, rather than a general
convex programming solver, one must use linear under- and over-
estimators.

For some specific functions, and some specific domains, one can
characterize the so-called convex and concave envelopes, which are
the tightest possible convex under-estimator and concave over-
estimator. A classical example, due to McCormick [48], concerns
the quadratic function y1y2, over the rectangular domain defined
by ℓ1 ≤ y1 ≤ u1 and ℓ2 ≤ y2 ≤ u2. If z denotes the
additional variable, the convex envelope is defined by the two
linear inequalities z ≥ ℓ2y1 + ℓ1y2 − ℓ1ℓ2 and z ≥ u2y1 + u1y2 −

u1u2, and the concave envelope by z ≤ u2y1 + ℓ1y2 − ℓ1u2 and
z ≤ ℓ2y1 + u1y2 − u1ℓ2. In this case, both envelopes are defined
using only linear constraints.
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Many other examples of under- and over-estimating functions,
and convex and concave envelopes, have appeared in the literature.
See the books by Horst and Tuy [49] and Tawarmalani and
Sahinidis [10] for details.

We mention another important paper, that of Androulakis
et al. [50]. Their approach constructs convex under-estimators of
general, twice-differentiable, non-convex functionswhose domain
is a box (also known as a hyper-rectangle). The basic idea is to add
a convex quadratic term that takes the value zero on the corners
of the box, and the choice of the quadratic term is governed by a
vector α ≥ 0. For example, suppose the function f (x) is defined
on B := {x : 0 ≤ x ≤ e}, where e is the all ones vector, and let
Diag(α) be the diagonal matrix having α as its diagonal. Then f (x)
is under-estimated by

fα(x) := f (x) + xTDiag(α)x − αT x,

since xTDiag(α)x−αT x ≤ 0 for all x ∈ B (and in fact equals zero on
the corners of B). If α is chosen large, then fα(x) will also be convex
because its Hessian will be dominated by Diag(α). On the other
hand, as α increases, the quality of the resulting under-estimation
by fα(x) worsens, so the choice of α is critical.

3.2. Separable functions

A function f (x, y) is said to be separable if there exist functions
g(xi) for i = 1, . . . , n1 and functions h(yi) for i = 1, . . . , n2 such
that

f (x, y) =

n1
i=1

g(xi) +

n2
i=1

h(yi).

Separable functions are relatively easy to handle in two ways.
First, if one has a useful convex under-estimator for each of the
individual functions g(xi) and h(yi), the sum of those individual
under-estimators is an under-estimator for f (x, y). The same
applies to concave over-estimators. Second, even if one does not
have useful under- or over-estimators, one can use the following
approach, due to Beale [51] and Tomlin [52].

1. Approximate each of the functions g(xi) and h(yi) with a piece-
wise linear function.

2. Introduce new continuous variables, gi and hi, representing the
values of these functions.

3. Add one binary variable for each ‘piece’ of each piece-wise
linear function.

4. Add further binary variables, along with linear constraints, to
ensure that the variables gi and hi take the correct values.

In this way, any non-convex MINLP with separable functions can
be approximated by an MILP.

3.3. Factorization

If anMINLP is not separable, and it contains functions for which
good under- or over-estimators are not available, one can often
apply a process called factorization, also due to McCormick [48].
Factorization involves the introduction of additional variables and
constraints, in such a way that the resulting MINLP involves
functions of a simpler form.

Rather than presenting a formal definition, we give an example
(see [53] for more details). Suppose an MINLP contains the (non-
linear and non-convex) function f (y1, y2, y3) = exp

√
y1y2 + y3


,

where y1, y2, y3 are continuous and non-negative variables. If
one introduces new variables w1, w2, and w3, along with the
constraints w1 =

√
w2, w2 = w3 + y3, and w3 = y1y2, one can

rewrite the function f as exp(w1). Then, one needs under-
and over-estimators only for the relatively simple functions
exp(w1),

√
w2, and y1y2.
3.4. Branching: standard and spatial

The branch-and-bound method for MILPs, usually attributed
to Land and Doig [54], is well known. The key operation, called
branching, is based on the following idea. If an integer-constrained
variable xi takes a fractional value x∗

i in the optimal solution to
the continuous relaxation of a problem, then one can replace the
problem with two subproblems. In one of the subproblems, the
constraint xi ≤ ⌊x∗

i ⌋ is added, and, in the other, the constraint
xi ≥ ⌈x∗

i ⌉ is added. Clearly, the solution to the original relaxation
is not feasible for either of the two subproblems.

In the global optimization literature, one branches by par-
titioning the domain of continuous variables. Typically, this is
done by taking a continuous variable yi, whose current domain is
[ℓi, ui], choosing some value β with ℓi < β < ui, and creating two
subproblems, one with domain [ℓi, β] and the other with domain
[β, ui]. In addition, when solving either of the subproblems, one
can replace the original under- and over-estimators with stronger
ones, which take advantage of the reduced domain. This process,
called ‘spatial’ branching, is necessary for two reasons: (i) the op-
timal solution to the relaxation may not be feasible for the original
problem, and (ii) even if it is feasible, the approximation of the cost
function in the relaxation may not be sufficiently accurate. Spatial
branching is also due to McCormick [48].

We illustrate spatial branching with an example. Suppose that
the continuous variable y1 is known to satisfy 0 ≤ y1 ≤ ui and that,
in the process of factorization, we have introduced a new variable
zi, representing the quadratic term y2i . If we intended to use a
general convex programming solver, we could obtain a convex
relaxation by appending the constraints zi ≥ y2i and zi ≤ uiyi, as
shown in Fig. 1(a). If, on the other hand, we preferred to use an LP
solver, we could add instead the constraints zi ≥ 0, zi ≥ u2

i −2uiyi,
and zi ≤ uiyi, as shown in Fig. 1(b).

Now, suppose the solution of the relaxation is not feasible for
the MINLP, and we decide to branch by splitting the domain of y1
into the intervals [0, β] and [β, ui]. Also suppose for simplicity that
we are using LP relaxations. Then, in the left branch we can tighten
the relaxation by adding β2

− 2βyi ≤ zi ≤ βyi, while in the right
branch we can add βyi ≤ zi ≤ uiyi (see Fig. 2(a) and (b)).

Since MINLPs contain both integer-constrained and continuous
variables, one is free to apply both standard branching or spatial
branching where appropriate. Moreover, even if one applies
standard branching, onemay still be able to tighten the constraints
in each of the two subproblems.

4. Algorithms for the general case

Now that we are armed with the concepts described in the
previous section, we can go on to survey specific algorithms for
general non-convex MINLPs.

4.1. Spatial branch-and-bound

Branching, whether standard or spatial, usually has to be
applied recursively, leading to a hierarchy of subproblems. As in
the branch-and-bound method for MILPs [54], these subproblems
can be viewed as being arranged in a tree structure, which can
be searched in various ways. A subproblem can be removed from
further consideration (also known as fathomed or pruned) under
three conditions: (i) it is feasible for the original problem and its
cost under the relaxed objective equals it true cost (to within some
specified tolerance), (ii) the associated lower bound is no better
than the best upper bound found so far, or (iii) it is infeasible.

This overall approach was first proposed by McCormick [48] in
the context of global optimization problems. Later on, several au-
thors (mostly from the chemical process engineering community)
realized that the approach could be applied just aswell to problems
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(a) Convex. (b) Linear.

Fig. 1. Convex and linear approximations of the function zi = y2i over the domain [0, ui].
(a) Left. (b) Right.

Fig. 2. Improved linear approximations after spatial branching.
with integer variables. See, for example, Smith and Pantelides [55]
or Lee and Grossmann [56].

4.2. Branch-and-reduce

A major step forward in the exact solution of non-convex
MINLPs was the introduction of the branch-and-reduce technique
byRyoo and Sahinidis [57,58]. This is an improved version of spatial
branch-and-bound in which one attempts to reduce the domains
of the variables, beyond the reductions that occur simply as a
result of branching. More specifically, one adds the following two
operations: (i) before a subproblem is solved, its constraints are
checked to seewhether the domain of any variables can be reduced
without losing any feasible solutions; (ii) after the subproblem
is solved, sensitivity information is used to see whether the
domain of any variables can be reducedwithout losing any optimal
solutions.

After domain reduction has been performed, one can then
generate better convex under-estimators. This in turn enables
one to tighten the constraints, which can lead to improved lower
bounds. The net effect is usually a drastic decrease in the size of the
enumeration tree.

Branch-and-reduce is usually performed using LP relaxations,
rather than more complex convex programming relaxations, due
to two important facts. First and foremost, LPs can be solved more
efficiently and with greater numerical stability. Second, sensitivity
information is more readily available (and easier to interpret) in
the case of LPs.

Tawarmalani and Sahinidis [59,60] added some further refine-
ments to this scheme. In [59], a unified framework is given for do-
main reduction strategies, and, in [60], it is shown that, even when
a constraint is convex, it may be helpful (in terms of tightness of
the resulting relaxation) to introduce additional variables and split
the constraint into two constraints. Some further enhanced rules
for domain reduction, branching variable selection, and branching
value have also been given by Belotti et al. [61].

4.3. α-branch-and-bound

Androulakis et al. [50] proposed an exact spatial branch-and-
bound algorithm for global optimization of non-convex NLPs in
which all functions involved are twice differentiable. This method,
called α-BB, is based on their general technique for constructing
under-estimators, whichwasmentioned in Section 3.1. In Adjiman
et al. [62,63], the algorithm was improved by using tighter
and more specialized under-estimators for constraints that have
certain specific structures, and reserving the general technique
only for constraints that do not have any of those structures. Later
on, Adjiman et al. [64] extended the α-BB method to the mixed-
integer case.

One advantage that α-BB has, with respect to the more
traditional spatial branch-and-bound approach, or indeed branch-
and-reduce, is that usually no additional variables are needed.
That is to say, one can often work with the original objective and
constraint functions, without needing to resort to factorization.
This is because the under-estimators used do not rely on functions
being factored. On the other hand, to solve the relaxations, one
needs a general convex programming solver, rather than an LP
solver.

4.4. Conversion to an MILP

Another approach that one can take is to factorize the problem
(if necessary) as described in Section 3.3, approximate the resulting
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separable MINLP by an MILP as described in Section 3.2, and
then solve the resulting MILP using any available MILP solver.
To our knowledge, this approach was first suggested by Beale
and Tomlin [65]. The conversion into an MILP leads to sets
of binary variables with a certain special structure. Beale and
Tomlin call these sets special ordered sets of type 2 (SOS2), and
propose a specialized branching rule. This branching rule is
now standard in most commercial and academic MILP solvers.
Beale and Forrest [66] discuss a method for updating the MILP
approximations dynamically and an improved branching strategy
for the SOS2 variables.

Keha et al. [67] compare several different ways of modeling
piece-wise linear functions (PLFs) using binary variables. In their
follow-up paper [68], the authors present a branch-and-cut
algorithm that uses the SOS approach in conjunction with strong
valid inequalities. Vielma and Nemhauser [69] also present an
elegant way to reduce the number of auxiliary binary variables
required for modeling PLFs.

A natural way to generalize this approach is to construct PLFs
that approximate functions of more than one variable. (In fact,
this was already suggested by Beale [70] and Tomlin [52] in the
context of non-convex NLPs.) A recent exploration of this idea was
conducted by Martin et al. [27]. As well as constructing such PLFs,
they also propose adding cutting planes to tighten the relaxation.
Geißler et al. [71] is another recent reference.

Leyffer et al. [72] show that the naive use of PLFs can lead
to an infeasible MILP, even when the original MINLP is clearly
feasible. They propose a modified approach, called ‘branch-and-
refine’, in which piece-wise-linear under- and over-estimators are
constructed. This ensures that all of the original feasible solutions
for the MINLP remain feasible for the MILP. Also, instead of
branching spatially or on special ordered sets, they branch in the
classical way. Finally, they refine the PLFs each time a subproblem
is constructed.

4.5. Some other exact approaches

For completeness, we mention a few other exact approaches.

• Benson and Erenguc [73] and Bretthauer et al. [74] present
exact algorithms for MINLPs with linear constraints and a
concave objective function. Their algorithms use LP relaxations,
specialized penalty functions, and cutting planes that are
similar to the well-known concavity cuts of Tuy [75].

• Kesavan et al. [76] present special techniques for MINLPs in
which separability occurs at the level of the vectors x and y,
i.e., the functions f j(x, y) can be expressed as g j(x) + hj(y). In
fact, the authors assume that the functions hj(·) are linear and
that y is binary.

• Karuppiah and Grossman [77] use Lagrangian decomposition
to generate lower bounds and cutting planes for general non-
convex MINLPs.

• D’Ambrosio et al. [78] present an exact algorithm for MINLPs in
which the non-convexities are solely manifested as the sum of
non-convex univariate functions. In this sense, while the whole
problem is not necessarily separable, the non-convexities are.
Their algorithm, called SC-MINLP, involves an alternating
sequence of convex MINLPs and non-convex NLPs.

4.6. Heuristics

All of the methods mentioned so far in this section have been
exact methods. To close this section, we mention some heuristic
methods, i.e., methods designed to find good, but not provably
optimal, solutions quickly.

It is sometimes possible to convert exact algorithms for convex
MINLPs into heuristics for non-convex MINLPs. Leyffer [79] does
this using an MINLP solver that combines branch-and-bound with
sequential quadratic programming. Nowak and Vigerske [80] do
so by using quadratic under- and over-estimators of all nonlinear
functions, together with an exact solver for convex all-quadratic
problems.

Other researchers have adapted classical heuristic (and meta-
heuristic) approaches, normally applied to 0–1 LPs, to the more
general case of non-convex MINLPs. For example, Exler et al. [81]
present a heuristic, based on tabu search, for certain non-convex
MINLP instances arising in integrated systems and process control
design. A particle-swarm optimization for MINLPs is presented
in [82], [83] studies an enhanced genetic algorithm, and [84]
considers an ant-colony approach. Two recent examples are that
of Liberti et al. [85], whose approach involves the integration
of variable neighborhood search, local branching, sequential
quadratic programming, and branch-and-bound, and that of
Berthold [86], who conducts large neighborhood local search
by rounding the fractional solution from a relaxation. Finally,
D’Ambrosio et al. [87] and Nannicini and Belotti [88] have recently
presented heuristics that involve the solution of an alternating
sequence of NLPs and MILPs.

5. The quadratic case (and beyond)

In this section, we focus on the case in which all of the non-
linear objective and constraint functions are quadratic. This case
has receivedmuch attention, not only because it is themost natural
generalization of the linear case, but also because it has a verywide
range of applicability. Indeed, all MINLPs involving polynomials can
be reduced to quadratic MINLPs by using additional constraints
and variables (e.g., the cubic constraint y2 = y31 can be reduced
to the quadratic constraints y2 = y1w and w = y21, where w is an
additional variable). The papers [89,90] provide further discussion
of such transformations. Moreover, even functions that are
not polynomials can often be well approximated by quadratic
functions in the domain of interest.

5.1. Quadratic optimization with binary variables

The simplest quadratic MINLPs are those in which all variables
are binary. The literature on such problems is vast, and several
different approaches have been suggested for tackling them.
Among them, we mention the following.

• A seminal result due to Fortet [91] (see also [92,93]) is that
a quadratic function of n binary variables can be linearized
by adding O(n2) additional variables and constraints. More
precisely, any term of the form xixj, with i ≠ j, can be replaced
with a new binary variable xij, along with constraints of the
form xij ≤ xi, xij ≤ xj, and xij ≥ xi + xj − 1. Note the
match with McCormick’s approximation of the function yiyj in
the continuous case, mentioned in Section 3.1.

• Glover [94] showed that, in fact, one can linearize such
functions using only O(n) additional variables and constraints.
See, e.g., [95,96] for related formulations. Chaovalitwongse
et al. [97] and Sherali and Smith [98] provide recent,
conceptually different O(n) linearization approaches.

• Hammer and Rubin [99] showed that non-convex quadratic
functions in binary variables can be convexified by adding or
subtracting appropriate multiples of terms of the form x2i −

xi (which equal zero when xi is binary). This approach was
improved by Körner [100].

• Hammer et al. [101] present a bounding procedure, called the
roof dual, which replaces each quadratic function with a tight
linear under-estimator. Extensions of this are surveyed in Boros
and Hammer [102].
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• Pardalos and Rodgers [103] solve unconstrained 0–1 QPs
within a branch-and-bound algorithm involving careful pre-
processing and computational efficiencies.

• Poljak and Wolkowicz [104] examine several bounding tech-
niques for unconstrained 0–1 QPs, and show that they all give
the same bounds.

• Caprara [105] shows how to compute good bounds efficiently
using Lagrangian relaxation, when the linearized version of the
problem can be solved efficiently.

There are three other well-known approaches, that are not only
highly effective, but can be adapted to quadratic problems that
have a mixture of binary, integer-constrained, and/or continuous
variables. These are discussed in the following three subsections.

5.2. The reformulation-linearization technique (RLT)

In their seminal 1986 paper, Adams and Sherali [106] proposed
the following approach to 0–1 quadratic programs. First, the
additional xij variables are introduced, alongwith the constraints of
Fortet [91] mentioned in the previous subsection. Next, new valid
constraints are derived as follows.
• Each linear inequality, say aT x ≤ b, is multiplied by each vari-

able in turn, to obtain n valid quadratic inequalities of the form
(aT x)xk ≤ bxk. Replacing each product of the form xixk with the
single variable xik, and replacing x2k with xk, one obtains the fol-
lowing valid linear inequalities:
i≠k

aixik ≤ (b − ak)xk (k = 1, . . . , n).

• Similarly, multiplying each linear inequality by terms of the
form 1 − xk, one obtains n more valid quadratic inequalities of
the form (aT x)(1 − xk) ≤ b(1 − xk). This yields the linear in-
equalities:
i≠k

ai(xi − xik) ≤ (b − ak)(1 − xk) (k = 1, . . . , n).

The original linear inequalities can then be discarded, as they
are implied by the new ones.

• Next, each linear equation, say cT x = d, is multiplied by each
variable in turn, to obtain n valid quadratic equations. Lineariz-
ing as usual, one obtains
i≠k

cixik = (d − ck)xk (k = 1, . . . , n).

Unlike in the case of inequalities, there is no need to multiply
equations by 1− xk, since the resulting equations would be im-
plied by the original equations and the new ones.

Later on, Sherali and Adams [107] realized that, if the above
procedure is applied to a 0–1 linear program, the continuous
relaxation of the transformed instance is stronger than that of
the original instance. They also showed that one could obtain
a hierarchy of increasingly stronger relaxations, by introducing
variables representing products of three variables, products of
four variables, and so on. They named the entire scheme the
Reformulation-Linearization Technique (RLT).

Since then, the RLT has been extended to cover several other
classes of convex and non-convex MINLPs, beyond pure 0–1 linear
and quadratic problems.Wewillmention someof these extensions
in Sections 5.5 and 5.6, but, for a full treatment, the reader is
referred to the book [9].

5.3. Semidefinite relaxation

Another popular approach for generating strong relaxations
of non-convex quadratic optimization (and other) problems is
based on semidefinite programming (SDP). The starting point of
this approach is as follows. Given an arbitrary vector x ∈ Rn of
decision variables, define thematrix X = xxT . Note that a quadratic
function of x is a linear function of X . Therefore, any optimization
problem involving quadratic functions can be reformulated as an
optimization problem involving linear functions, togetherwith the
single non-convex constraint X = xxT .

Now, note that X is real, symmetric and positive semidefinite
(psd), and that, for 1 ≤ i ≤ j ≤ n, the entry Xij represents the
product xixj (and is thus analogous to the term xij in Sections 5.1
and 5.2). Moreover, as pointed out in [108,109], the augmented
matrix

X̂ :=


1
x

 
1
x

T

=


1 xT

x X


is also psd. This fact enables one to construct useful SDP relaxations
of various quadratic optimization problems (e.g., [110–112,109,
113,114,108]).

Note that, for aMixed-IntegerQuadratic Program (i.e., anMINLP
with a quadratic objective but linear constraints), one can easily
combine the RLT and SDP, to obtain a relaxation that dominates
those obtained by using either technique alone. Anstreicher [115]
shows that this can yield significant benefits in terms of bound
strength, though running times can be high.

Buchheim andWiegele [116] use SDP relaxations and a tailored
branching scheme for a special kind of Mixed-Integer Quadratic
Program, in which the only constraints present are ones that
enforce each variable to belong to a specified subset of R. Note
that this includes unconstrained problems with any mixture of
continuous, binary and general-integer variables.

A completely positive matrix is one that can be factored as NNT ,
where N is a component-wise nonnegative matrix. Clearly, if x ∈

Rn
+
, then X̂ is completely positive rather than merely psd. One

can use this fact to derive even stronger SDP relaxations; see the
survey [117]. Chen and Burer [118] use such an approach within
branch-and-bound to solve non-convex QPs having continuous
variables and linear constraints.

5.4. Polyhedral theory and convex analysis

We have seen, in the previous three subsections, that a popular
way to tackle quadratic MINLPs is to introduce new variables
representing products of pairs of original variables. Once this
has been done, it is natural to study the convex hull of feasible
solutions, in the hope of deriving strong linear (or at least convex)
relaxations.

Padberg [40] tackled exactly this topic when he introduced a
polytope associated with unconstrained 0–1 quadratic programs,
which he called the Boolean quadric polytope. The Boolean quadric
polytope of order n is defined as

BQPn = conv

x ∈ {0, 1}n+( n

2 ) : xij = xixj (1 ≤ i < j ≤ n)


.

Note that here, just as in the original version of the RLT, the variable
xij is not defined when i = j. This is because squaring a binary
variable has no effect.

Padberg [40] derived various valid and facet-defining inequal-
ities for BQPn, called triangle, cut, and clique inequalities. Since
then, a wide variety of valid and facet-defining inequalities have
been discovered. These are surveyed in the book by Deza and Lau-
rent [119].

There are several other papers on polytopes related to quadratic
versions of traditional combinatorial optimization problems.
Among them, we mention [120] on the quadratic assignment
polytope, [121] on the quadratic semi-assignment polytope,
and [111] on the quadratic knapsack polytope. Padberg and
Rijal [122] studied several quadratic 0–1 problems in a common
framework.
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There are also three papers on the following (non-polyhedral)
convex set [123–125]:

conv

x ∈ [0, 1]n, y ∈ R


n+1
2


, xij = xixj (1 ≤ i ≤ j ≤ n)


.

This convex set is associated with non-convex quadratic program-
ming with box constraints, a classical problem in global optimiza-
tion. Burer and Letchford [124] use a combination of polyhedral
theory and convex analysis to analyze this convex set. In a follow-
uppaper, Burer and Letchford [126] apply the sameapproach to the
case in which there are unbounded continuous and integer vari-
ables.

Complementing the above approaches, several researchers
have looked at the convex hull of sets of the form {(z, x) ∈ Rn+1

:

z = q(x), x ∈ D}, where q(x) is a given quadratic function
and D is a bounded (most often simple) domain [127–129]. While
slightly less general than convexifying in the space of all pairs xij
as done above, this approach much more directly linearizes and
convexifies the quadratics of interest in a given problem. It can
also be effectively generalized to the non-quadratic case (see, for
example, Section 2 of [53]).

5.5. Some additional techniques

Saxena et al. [130,131] have derived strong cutting planes for
non-convex MIQCQPs (mixed-integer quadratically constrained
quadratic programs). In [130], the cutting planes are derived in the
extended quadratic space of the Xij variables, using disjunctions of
the form (aT x ≤ b)∨ (aT x ≥ b). In [131], the cutting planes are de-
rived in the original space by projecting down certain relaxations
from the quadratic space. See also the recent survey Burer and Sax-
ena [132]. Separately, Galli et al. [133] have adapted the ‘gap in-
equalities’, originally defined in [134] for the max-cut problem, to
non-convex MIQPs.

Berthold et al. [135] present an exact algorithm for MIQCQPs
that is based on the integration of constraint programming and
branch-and-cut. The key is to use quadratic constraints to reduce
domains, wherever possible. Misener and Floudas [25] present an
exact algorithm for non-convex mixed 0–1 QCQPs that is based on
branch-and-reduce, together with cutting planes derived from the
consideration of polyhedra involving small subsets of variables.

Billionnet et al. [136] revisit the approach for 0–1 quadratic
programs,mentioned in Section 5.1, due toHammer andRubin [99]
and Körner [100]. They show that an optimal reformulation can be
derived from the dual of an SDP relaxation. Billionnet et al. [137]
then show that the method can be extended to general MIQPs,
provided that the integer-constrained variables are bounded and
the part of the objective function associated with the continuous
variables is convex.

Adams and Sherali [37] and Freire et al. [38] present algorithms
for bilinear problems. A bilinear optimization problem is one in
which all constraints are linear, and the objective function is
the product of two linear functions (and therefore quadratic).
The paper [37] is concerned with the case in which one of
the linear functions involves binary variables and the other
involves continuous variables. The paper [38], on the other hand,
is concerned with the case in which all variables are integer-
constrained.

Finally, we mention that Nowak [138] proposes using La-
grangian decomposition for non-convex MIQCQPs.

5.6. Extensions to polynomial optimization

Many researchers have extended ideas from quadratic pro-
grams to the much broader class of polynomial optimization prob-
lems. A simple way to linearize polynomials involving binary
variables was given by Glover and Woolsey [92]. The RLT ap-
proach of Sherali and Adams [9] explained in Section 5.2 creates
a hierarchy of ever-tighter LP relaxations of polynomial problems.
Some successful applications of the RLT approach include the solu-
tion of 0–1 polynomial programs [107], mixed-integer polynomial
programs [139], and mixed-discrete problems having non-convex
polynomial constraints and general convex constraints [140].

Recently, some sophisticated approaches have been developed
for mixed 0–1 polynomial programs that draw on concepts
from real algebraic geometry, commutative algebra, and moment
theory. Relevant works include Nesterov [141], Parrilo [142],
Lasserre [47], Laurent [143], and De Loera et al. [144]. The method
of Lasserre [145] works for integer polynomial programs when
each variable has an explicit lower and upper bound.

Michaels andWeismantel [146]make an important observation
for Integer Polynomial Programming. They note that, given a non-
convex polynomial, say f (x), there may exist a convex polynomial,
say f ′(x), that achieves the same value as f (x) at all integer points.
In principle, this could allow such non-convex programs to be
made convex.

6. Software

There are five software packages that can solve non-convex
MINLPs to proven optimality:

BARON, α-BB, LINDO-Global, Couenne, and GloMIQO.

BARON is due to Sahinidis and colleagues [57,58,10], α-BB is
due to Adjiman et al. [64], and LINDO-Global is described in
Lin and Schrage [147]. Couenne is due to Belotti et al. [43],
and GloMIQO [148] relates to the technique of Misener and
Floudas [25] described in Section 5.5.

Some packages can be used to find heuristic solutions for non-
convex MINLPs:

BONMIN, DICOPT, LaGO, and MIDACO.

The first three are actually packages for convex MINLPs, while
the fourth is based on ant-colony optimization. The algorith-
mic approach behind BONMIN is described in [8], and DICOPT
has been developed by Grossmann and co-authors (e.g., Ko-
cis and Grossmann [149]). LaGO is described in Nowak and
Vigerske [80], and MIDACO is presented in [84] and available at
midaco-solver.com.

The package due to Liberti et al. [85], described in Section 4.6, is
called RECIPE. The paper by Berthold et al. [135] presents anMIQCP
solver for the software package SCIP. Finally, GloptiPoly [150]
can solve general polynomial optimization problems.

7. Conclusions

Because non-convex MINLPs encompass a huge range of
applications and problem types, the depth and breadth of
techniques used to solve them should come as no surprise. In this
survey, we have tried to give a fair and up-to-date introduction to
these techniques.

Without a doubt, substantial successes in the fields of MILP and
global optimization have played critical roles in the development
of algorithms for non-convex MINLPs, and we suspect further
successes will have continued benefits for MINLPs. We believe,
also, that even more insights can be achieved by studying MINLPs
specifically. For example, analyzing — and generating cutting
planes for — the various convex hulls that arise in MINLPs (see
Section 5.4) will require aspects of both polyhedral theory and
convex analysis to achieve best results.

We also advocate the development of algorithms for various
special cases of non-convex MINLPs. While general-purpose
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algorithms for MINLPs are certainly needed, since MINLP are
so broad, there will always be a need for handling important
special cases. Special cases can also allow the development of
newer techniques (e.g., semidefinite relaxations), which may then
progress to more general techniques.

Finally, we believe there will be an increasing place for
heuristics and approximation algorithms for non-convex MINLPs.
Most techniques so far aim for globally optimal solutions, but in
practice it would be valuable to have sophisticated approaches for
finding near-optimal solutions.
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