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Lecture topics

1. Time series and longitudinal data: similarities/differences

2. Linear models: capturing correlation structure

3. Missing values: Rubin’s hierarchy, informative dropout

4. Generalised linear models: binary and count data

5. Joint modelling: repeated measurement and time-to-event
outcomes



1. Time series and longitudinal data

Bailrigg temperature records

Daily maximum temperatures, 1.09.1995 to 31.08.1996
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Schizophrenia clinical trial (PANSS)

• randomised clinical trial of drug therapies

• three treatments:

– haloperidol (standard)

– placebo

– risperidone (novel)

• dropout due to “inadequate response to treatment”

Treatment Number of non-dropouts at week
0 1 2 4 6 8

haloperidol 85 83 74 64 46 41
placebo 88 86 70 56 40 29
risperidone 345 340 307 276 229 199
total 518 509 451 396 315 269



Schizophrenia trial data
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Diggle, Farewell and Henderson (2007)



Time series decomposition

• trend and residual

• autocorrelation

• prediction



Analysis of Bailrigg temperature data

data<-read.table("../data_and_figures/maxtemp.data",header=F)

temperature<-data[,4]

n<-length(temperature)

day<-1:n

plot(day,temperature,type="l",cex.lab=1.5,cex.axis=1.5)

#

# plot shows strong seasonal variation,

# try simple harmonic regression

#



c1<-cos(2*pi*day/n)

s1<-sin(2*pi*day/n)

fit1<-lm(temperature~c1+s1)

lines(day,fit1$fitted.values,col="red")

#

# add first harmonic of annual frequency to check for

# non-sinusoidal pattern

#

c2<-cos(4*pi*day/n)

s2<-sin(4*pi*day/n)

fit2<-lm(temperature~c1+s1+c2+s2)

lines(day,fit2$fitted.values,col="blue")

#

# two fits look similar, but conventional F test says otherwise

#

summary(fit2)

RSS1<-sum(fit1$resid^2); RSS2<-sum(fit2$resid^2)

F<-((RSS1-RSS2)/2)/(RSS2/361)

1-pf(F,2,361)



#

# conventional residual plots

#

# residuals vs fitted values

#

plot(fit2$fitted.values,fit2$resid)

#

# residuals in time-order as scatterplot

#

plot(1:365,fit2$resid)

#

# and as line-graph

#

plot(1:365,fit2$resid,type="l")



#

# examine autocorrelation properties of residuals

#

residuals<-fit2$resid

par(mfrow=c(2,2),pty="s")

for (k in 1:4) {

plot(residuals[1:(n-k)],residuals[(k+1):n],

pch=19,cex=0.5,xlab=" ",ylab=" ",main=k)

}

par(mfrow=c(1,1))

acf(residuals)

#

# exponentially decaying correlation looks reasonable

#

cor(residuals[1:(n-1)],residuals[2:n])

Xmat<-cbind(rep(1,n),c1,s1,c2,s2)

rho<-0.01*(60:80)

profile<-AR1.profile(temperature,Xmat,rho)



#

# examine results

#

plot(rho,profile$logl,type="l",ylab="L(rho)")

Lmax<-max(profile$logl)

crit.val<-0.5*qchisq(0.95,1)

lines(c(rho[1],rho[length(rho)]),rep(Lmax-crit.val,2),lty=2)

profile

#

# Exercise: how would you now re-assess the significance of

# the second harmonic term?



#

# profile log-likelihood function follows

#

AR1.profile<-function(y,X,rho) {

m<-length(rho)

logl<-rep(0,m)

n<- length(y)

hold<-outer(1:n,1:n,"-")

for (i in 1:m) {

Rmat<-rho[i]^abs(hold)

ev<-eigen(Rmat)

logdet<-sum(log(ev$values))

Rinv<-ev$vectors%*%diag(1/ev$values)%*%t(ev$vectors)

betahat<-solve(t(X)%*%Rinv%*%X)%*%t(X)%*%Rinv%*%y

residual<- y-X%*%betahat

logl[i]<- - logdet - n*log(c(residual)%*%Rinv%*%c(residual))

}

max.index<-order(logl)[m]

Rmat<-rho[max.index]^abs(hold)

ev<-eigen(Rmat)

logdet<-sum(log(ev$values))

Rinv<-ev$vectors%*%diag(1/ev$values)%*%t(ev$vectors)

betahat<-solve(t(X)%*%Rinv%*%X)%*%t(X)%*%Rinv%*%y

residual<- y-X%*%betahat

sigmahat<-sqrt(c(residual)%*%Rinv%*%c(residual)/n)

list(logl=logl,rhohat=rho[max.index],sigmahat=sigmahat,betahat=betahat)

}



Longitudinal data

• replicated time series;

• focus of interest often on mean values;

• modelling and inference can and should exploit
replication



2. Linear models

• correlation and why it matters

• exploratory analysis

• linear Gaussian models



Correlation and why it matters

• different measurements on the same subject are
typically correlated

• and this must be recognised in the inferential process.



Estimating the mean of a time series

Y1, Y2, ..., Yt, ..., Yn Yt ∼ N(µ, σ2)

Classical result: Ȳ ± 2
√

σ2/n

But if Yt is a time series:

• E[Ȳ ] = µ

• Var{Ȳ } = (σ2/n) × {1 + n−1
∑

u 6=t Corr(Yt, Yu)}

Exercise: is the sample variance unbiased for σ2 = Var(Yt)?



Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n
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Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n
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Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n
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Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n

Parameter estimates and standard errors:

ignoring correlation recognising correlation
estimate standard error estimate standard error

α 5.234 0.074 5.234 0.202
β 0.493 0.026 0.493 0.011



A spaghetti plot of the PANSS data
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Exploring covariance structure: balanced data

(Yij , tj) : j = 1, ..., n; i = 1, ...,m

• fit saturated treatments-by-times model to mean response

• compute sample covariance matrix of residuals

PANSS data:

SD Y.t0 Y.t1 Y.t2 Y.t4 Y.t6 Y.t8

Y.t0 20.019 1.000 0.533 0.366 0.448 0.285 0.229

Y.t1 20.184 0.533 1.000 0.693 0.589 0.658 0.535

Y.t2 22.120 0.366 0.693 1.000 0.670 0.567 0.678

Y.t4 20.996 0.448 0.589 0.670 1.000 0.718 0.648

Y.t6 24.746 0.285 0.658 0.567 0.718 1.000 0.792

Y.t8 23.666 0.229 0.535 0.678 0.648 0.792 1.000

• modest increase in variability over time

• correlation decays with increasing time-separation



Exploring covariance structure: unbalanced
data

(Yij, tij) : j = 1, ..., ni; i = 1, ...,m

The variogram of a stochastic process Y (t) is

V (u) =
1

2
Var{Y (t) − Y (t − u)}

• well-defined for stationary and some non-stationary
processes

• for stationary processes,

V (u) = σ2{1 − ρ(u)}

• V (u) easier to estimate than ρ(u) when data are
unbalanced



Estimating the variogram

Data: (Yij , tij) : i = 1, ...,m; j = 1, ..., ni

rij = residual from preliminary model for mean response

• Define

vijkℓ =
1

2
(rij − rkℓ)

2

• Estimate

V̂ (u) = average of all vijiℓ such that |tij − tiℓ| ≃ u

σ̂2 = average of all vijkℓ such that i 6= k.
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Solid lines are estimates from data, horizontal lines are eye-ball
estimates (explanation later)



Where does the correlation come from?

• differences between subjects

• variation over time within subjects

• measurement error



General linear model, correlated residuals

i = subjects j = measurements within subjects

E(Yij) = xij1β1 + ... + xijpβp

Yi = Xiβ + ǫi

Y = Xβ + ǫ

• measurements from different subjects independent

• measurements from same subject typically correlated.



Parametric models for covariance structure

Three sources of random variation in a typical set of
longitudinal data:

• Random effects (variation between subjects)

– characteristics of individual subjects

– for example, intrinsically high or low responders

– influence extends to all measurements on the
subject in question.



Parametric models for covariance structure

Three sources of random variation in a typical set of
longitudinal data:

• Random effects

• Serial correlation (variation over time within subjects)

– measurements taken close together in time typically
more strongly correlated than those taken further
apart in time

– on a sufficiently small time-scale, this kind of
structure is almost inevitable



Parametric models for covariance structure

Three sources of random variation in a typical set of
longitudinal data:

• Random effects

• Serial correlation

• Measurement error

– when measurements involve delicate determinations,
duplicate measurements at same time on same
subject may show substantial variation

Diggle, Heagerty, Liang and Zeger (2002, Chapter 5)



Some simple models

• Compound symmetry

Yij − µij = Ui + Zij

Ui ∼ N(0, ν2)

Zij ∼ N(0, τ 2)

Implies that Corr(Yij , Yik) = ν2/(ν2 + τ 2), for all j 6= k



• Random intercept and slope

Yij − µij = Ui + Witij + Zij

(Ui,Wi) ∼ BVN(0,Σ)

Zij ∼ N(0, τ 2)

Often fits short sequences well, but extrapolation
dubious, for example Var(Yij) quadratic in tij



• Autoregressive

Yij − µij = α(Yi,j−1 − µi,j−1) + Zij

Yi1 − µi1 ∼ N{0, τ 2/(1 − α2)}

Zij ∼ N(0, τ 2), j = 2, 3, ...

Not a natural choice for underlying continuous-time
processes



• Stationary Gaussian process

Yij − µij = Wi(tij)

Wi(t) a continuous-time Gaussian process

E[W (t)] = 0 Var{W (t)} = σ2

Corr{W (t),W (t − u)} = ρ(u)

ρ(u) = exp(−u/φ) gives continuous-time version
of the autoregressive model



Time-varying random effects
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Time-varying random effects: continued
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• A general model

Yij − µij = d′
ijUi + Wi(tij) + Zij

Ui ∼ MVN(0,Σ)
(random effects)

dij = vector of explanatory variables for random effects

Wi(t) = continuous-time Gaussian process
(serial correlation)

Zij ∼ N(0, τ 2)
(measurement errors)

Even when all three components of variation are needed
in principle, one or two may dominate in practice



The variogram of the general model
(stationary case)

Yij − µij = Ui + Wi(tij) + Zij

V (u) = τ 2 + σ2{1 − ρ(u)} Var(Yij) = ν2 + σ2 + τ 2
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Fitting the model: non-technical summary

• Ad hoc methods won’t do

• Likelihood-based inference is the statistical gold standard

• But be sure you know what you are estimating when
there are missing values



Maximum likelihood estimation (V0 known)

Log-likelihood for observed data y is

L(β, σ2, V0) = −0.5{nm log σ2 + m log |V0|

+σ−2(y − Xβ)′(I ⊗ V0)
−1(y − Xβ)}, (1)

I ⊗ V0 denotes block-diagonal matrix with non-zero blocks V0

Given V0, estimator for β is

β̂(V0) = (X′(I ⊗ V0)
−1X)−1X′(I ⊗ V0)

−1y, (2)

Explicit estimator for σ2 also available as

σ̂2(V0) = RSS(V0)/(nm) (3)

RSS(V0) = {y − Xβ̂(V0)}
′(I ⊗ V0)

−1{y − Xβ̂(V0)}.



Maximum likelihood estimation, V0 unknown

Substitute (2) and (3) into (1) to give reduced log-likelihood

L(V0) = −0.5m[n log{RSS(V0)} + log |V0|]. (4)

Numerical maximization of (4) then gives V̂0, hence β̂ = β̂(V̂0)
and σ̂2 = σ̂2(V̂0).

• Dimensionality of optimisation is 1

2
n(n + 1) − 1

• Each evaluation of L(V0) requires inverse and
determinant of an n by n matrix.



A random effects model for CD4 cell counts

data<-read.table("../data_and_figures/CD4.data",header=T)

data[1:3,]

time<-data$time

CD4<-data$CD4

plot(time,CD4,pch=19,cex=0.25)

id<-data$id

uid<-unique(id)

for (i in 1:10) {

take<-(id==uid[i])

lines(time[take],CD4[take],col=i,lwd=2)

}



# Simple linear model assuming uncorrelated residuals

#

fit1<-lm(CD4~time)

summary(fit1)

#

# random intercept and slope model

#

library(nlme)

?lme

fit2<-lme(CD4~time,random=~1|id)

summary(fit2)



# make fitted value constant before sero-conversion

#

timeplus<-time*(time>0)

fit3<-lme(CD4~timeplus,random=~1|id)

summary(fit3)

tfit<-0.1*(0:50)

Xfit<-cbind(rep(1,51),tfit)

fit<-c(Xfit%*%fit3$coef$fixed)

Vmat<-fit3$varFix

Vfit<-diag(Xfit%*%Vmat%*%t(Xfit))

upper<-fit+2*sqrt(Vfit)

lower<-fit-2*sqrt(Vfit)

#

# plot fit with 95% point-wise confidence intervals

#

plot(time,CD4,pch=19,cex=0.25)

lines(c(-3,tfit),c(upper[1],upper),col="red")

lines(c(-3,tfit),c(lower[1],lower),col="red")



3. Missing values and dropouts

Issues concerning missing values in longitudinal data can be
addressed at two different levels:

• technical: can the statistical method I am using cope with
missing values?

• conceptual: why are the data missing? Does the fact
that an observation is missing convey partial information
about the value that would have been observed?

These same questions also arise with cross-sectional data, but
the correlation structure of longitudinal data can sometimes be
exploited to good effect, by modelling how the probability of
dropout for each person depends on their previously observed
measurements



Rubin’s classification

• MCAR (completely at random): P(missing) depends
neither on observed nor unobserved measurements

• MAR (at random): P(missing) depends on observed
measurements, but not on unobserved measurements

• MNAR (not at random): conditional on observed
measurements, P(missing) depends on unobserved
measurements.

Rubin (1976)



Dropout

Once a subject goes missing, they never return

Example : Longitudinal clinical trial

• completely at random: patient leaves the the study
because they move house

• at random : patient leaves the study on their doctor’s
advice, based on observed measurement history

• not at random : patient misses their appointment
because they are feeling unwell.

Little (1995)



Modelling the missing value process

• Y = (Y1, ..., Yn), intended measurements on a single
subject

• t = (t1, ..., tn), intended measurement times

• M = (M1, ...,Mn), missingness indicators

• for dropout, M reduces to a single dropout time D,
in which case:

– (Y1, ..., YD−1) observed

– (YD, ..., Yn) missing

A model for data subject to missingness is just a specification
of the joint distribution

[Y,M ]



Modelling the missing value process:
three approaches

• Selection factorisation

[Y,M ] = [Y ][M |Y ]

• Pattern mixture factorisation

[Y,M ] = [M ][Y |M ]

• Random effects

[Y,M ] =

∫

[Y |U ][M |U ][U ]dU



Comparing the three approaches

• Pattern mixture factorisation has a natural data-analytic
interpretation
(sub-divide data into different dropout-cohorts)

• Selection factorisation may have a more natural
mechanistic interpretation in the dropout setting
(avoids conditioning on the future)

• Random effects conceptually appealing, especially for noisy
measurements, but make stronger assumptions and
usually need computationally intensive methods
for likelihood inference



Fitting a model to data with dropouts

• MCAR

1. almost any method will give sensible point estimates
of mean response profiles

2. almost any method which takes account of
correlation amongst repeated measurements will
give sensible point estimates and standard errors



• MAR

1. likelihood-based inference implicitly assumes MAR

2. for inferences about a hypothetical dropout-free
population, there is no need to model the dropout
process explicitly

3. but be sure that a hypothetical dropout-free
population is the required target for inference



• MNAR

1. joint modelling of repeated measurements and dropout
times is (more or less) essential

2. but inferences are likely to be sensitive to
modelling assumptiuons that are difficult
(or impossible) to verify empirically



Proof: Partition Y for each subject into observed and missing
components, Y = (Yo, Ym) and let M denote binary vector of
missingness indicators. Likelihood for observed data is

L = g(yo,m) =
∫

f(yo, ym,m)dym

=
∫

f(yo)f(ym|yo)p(m|yo, ym)dym

If p(m|yo, ym) = p(m|yo), take outside integral to give

L = p(m|yo)f(yo)

and log-likelihood contribution

logL = log p(m|yo; θ) + log f(yo|θ)

• OK to ignore first term for likelihood inference about θ

• and no loss of efficiency if θ = (θ1, θ2) such that θ1 and
θ2 parameterise p(·) and f(·), respectively.

But is inference about f(·) what you want?



Example

• Model is Yij = µ + Ui + Zij (random intercept)

• Dropout is MAR: logit(pij) = −1 − 2 × Yi,j−1
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• Observed means increase over time, but population mean
µ is constant



PJD’s take on ignorability

For correlated data, dropout mechanism can be ignored only if
dropouts are completely random

In all other cases, need to:

• think carefully what are the relevant practical questions,

• fit an appropriate model for both measurement process
and dropout process

• use the model to answer the relevant questions.

Diggle, Farewell and Henderson (2007)



Schizophrenia trial data

• Data from placebo-controlled RCT of drug treatments
for schizophrenia:

– Placebo; Haloperidol (standard); Risperidone (novel)

• Y = sequence of weekly PANSS measurements

• F = dropout time

• Total m = 516 subjects, but high dropout rates:

week −1 0 1 2 4 6 8
missing 0 3 9 70 122 205 251

proportion 0.00 0.01 0.02 0.14 0.24 0.40 0.49

• Dropout rate also treatment-dependent (P > H > R)



Schizophrenia data
PANSS responses from haloperidol arm
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Dropout is not completely at random
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Schizophrenia trial data
Mean response (random effects model)
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Schizophrenia trial data: summary

• dropout is not MCAR

• MAR model apparently fits well, but:

– hard to distinguish empirically between different MAR
models;

– and we haven’t formally investigated evidence for
informative dropout

• Fitted means relate to hypothetical, dropout-free
population



Embedding MAR within an MNAR model

1. Diggle and Kenward

Measurement model

General linear model for Yi = {Yit : t = 1, ..., n}
(balanced data)

Dropout model

Logistic regression:

logit P(Di = t|Yi) = α + βYi,t−1 + γYit

Diggle and Kenward, 1994



2. Barrett, Diggle, Henderson and Taylor-Robinson

Hybrid time-scales

Continuous-time measurement model

Yij = µij + Si(tij) + Zij

Discrete-time survival model

Uik = {Si(uk) : k = 1, ..., N}

Linkage

P(Di = d|Di > d− 1, U) = 1−Φ

(

µ̃id +

d
∑

k=1

γkUik

)

Barrett, Diggle, Henderson and Taylor-Robinson, 2015



4. Generalized linear models

• random effects models

• transition models

• marginal models

Diggle, Heagerty, Liang and Zeger (2002, Chapter 7)



Random effects GLM

Responses Y1, . . . , Yn on an individual subject conditionally
independent, given unobserved vector of random effects U

U ∼ g(u) represents properties of individual subjects that
vary randomly between subjects

• E(Yj |U) = µj : h(µi) = x′
jβ + U ′α

• Var(Yj|U) = φv(µj)

• (Y1, . . . , Yn) are mutually independent conditional on U .

Likelihood inference requires evaluation of

f(y) =

∫ n
∏

j=1

f(yj|U)g(U)dU



Transition GLM

Each Yj modelled conditionally on preceding Y1, Y2, . . . , Yj−1.

• E(Yj |history) = µj

• h(µj) = x′
jβ +

∑j−1

k=1
Y ′
j−kαk

• Var(Yj|history) = φv(µj)

Construct likelihood as product of conditional distributions,
usually assuming restricted form of dependence.

Example: fk(yj|y1, ..., yj−1) = fk(yj|yj−1)

Need to condition on y1 as model does not directly specify
marginal distribution f1(y1).



Marginal GLM

Let h(·) be a link function which operates component-wise,

• E(y) = µ : h(µ) = Xβ

• Var(yi) = φv(µi)

• Corr(y) = R(α).

Not a fully specified probability model

May require constraints on variance function v(·) and
correlation matrix R(·) for valid specification

Inference for β uses generalized estimating equations

Liang and Zeger (1986)



What are we estimating?

• in marginal modelling, β measures population-averaged
effects of explanatory variables on mean response

• in transition or random effects modelling, β measures
effects of explanatory variables on mean response of an
individual subject, conditional on

– subject’s measurement history (transition model)

– subject’s own random characteristics Ui

(random effects model)



Example: Simulation of a logistic regression model,
probability of positive response from subject i at time t is pi(t),

logit{pi(t)} : α + βx(t) + γUi,

x(t) is a continuous covariate and Ui is a random effect
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Example: Effect of mother’s smoking on probability of
intra-uterine growth retardation (IUGR).

Consider a binary response Y = 1/0 to indicate whether a baby
experiences IUGR, and a covariate x to measure the mother’s
amount of smoking.

Two relevant questions:

1. public health: by how much might population incidence
of IUGR be reduced by a reduction in smoking?

2. clinical/biomedical: by how much is a baby’s risk of IUGR
reduced by a reduction in their mother’s smoking?

Question 1 is addressed by a marginal model, question 2 by a
random effects model



R software

The following is almost certainly an incomplete list.

• Marginal models

Function gee within package of same name

• Random effects models

Function glmmPQL within MASS package or lmer within lme4

(but note evaluation of likelihood uses approximate meth-
ods that may perform badly if random effects are high-
dimensional). Package glmmBUGS is a Bayesian alternative.

• Transition models

Standard glm function, after computing values of required
functions of lagged responses to be used as explanatory
variables.



Illustration of marginal modelling

set.seed(2346)

x=rep(1:10,50)

logit=0.1*(x-mean(x))

subject=rep(1:50,each=10)

re=2*rnorm(50)

re=rep(re,each=10)

prob=exp(re+logit)/(1+exp(re+logit))

y=(runif(500)<prob)

fit1=glm(y~x,family=binomial)

summary(fit1)

library(gee)

fit2<-gee(y~x,id=subject,family=binomial)

summary(fit2)



5. Joint modelling: repeated measurements
and time-to-event outcomes

• what is it?

• why do it?

• random effects models



Joint modelling: what is it?

• Subjects i = 1, ...,m.

• Longitudinal measurements Yij at times tij, j = 1, ..., ni.

• Times-to-event Fi (possibly censored).

• Baseline covariates xi.

• Parameters θ.

[Y, F |x, θ]



Joint modelling: what is it?
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Joint modelling: why do it?

• To analyse failure time F , whilst exploiting correlation
with
an imperfectly measured, time-varying risk-factor Y

• To analyse a longitudinal outcome measure Y with
potentially informative dropout at time F

• Because relationship between Y and F is of direct interest



Random effects models

• linear Gaussian sub-model for repeated measurements

• proportional hazards sub-model with time-dependent
fraility for time-to-event

• sub-models linked through shared random effects

 

 

θ

α

βY

FR1

R2



Example: Wulfsohn and Tsiatis, 1997

latent random effect; measurement model; hazard model

Latent random effect

Random intercept and slope: Ui = (U0i, U1i)

Laird and Ware, 1982

Measurement model

Yij = µi(tij) + U0i + U1itij + Zij

• Zij ∼ N(0, τ 2)

• µi(tij) = X1i(tij)β1

• (U0i, U1i) ∼ BVN(0,Σ)



Hazard model

hi(t) = h0(t) exp{θ(U0i + U1itij)}

• h0(t) = non-parametric baseline hazard

• θ(U0i + U1itij) = linear predictor for hazard,
proportional to random effect



Example: Henderson, Diggle and Dobson, 2000

latent stochastic process; measurement model; hazard model

Latent stochastic process

Bivariate Gaussian process R(t) = {R1(t), R2(t)}

• Rk(t) = Dk(t)Uk + Wk(t)

• {W1(t),W2(t)}: bivariate stationary Gaussian process

• (U1, U2): multivariate Gaussian random effects

Bivariate process R(t) realised independently between subjects



Measurement model

Yij = µi(tij) + R1i(tij) + Zij

• Zij ∼ N(0, τ 2)

• µi(tij) = X1i(tij)β1

Hazard model

hi(t) = h0(t) exp{X2(t)β2 + R2i(t)}

• h0(t) = non-parametric baseline hazard

• η2(t) = X2i(t) + R2i(t) = linear predictor for hazard



Two (relatively) open questions

• Repeated measurements and recurrent events

• Informative follow-up

Note: what constitutes a missing value if follow-up schedule is
not pre-specified?



The joineR package

Exploring the mental data-set

library(joineR)

data(mental)

mental[1:5,]

y<-as.matrix(mental[,2:7]) # convert data to matrix format

means<-matrix(0,3,6)

for (trt in 1:3) {

ysub<-y[mental$treat==trt,]

means[trt,]<-apply(ysub,2,mean,na.rm=TRUE)

}

residuals<-matrix(0,150,6)

for (i in 1:150) {

residuals[i,]<-y[i,]-means[mental$treat[i],]

}

V<-cov(residuals,use="pairwise"); R<-cor(residuals,use="pairwise")

round(cbind(diag(V),R),3)



The joineR package

Setting up a jointdata object

is.data.frame(mental)

mental.unbalanced<-to.unbalanced(mental, id.col = 1,

times = c(0,1,2,4,6,8),Y.col = 2:7, other.col = 8:11)

names(mental.unbalanced)

names(mental.unbalanced)[3]<-"Y"

mental.long<-mental.unbalanced[,1:3]

mental.surv <- UniqueVariables(mental.unbalanced,

var.col=6:7,id.col = 1)

mental.baseline <- UniqueVariables(mental.unbalanced,

var.col=4,id.col = 1)

mental.baseline$treat<-as.factor(mental.baseline$treat) # !!!

mental.joint<-jointdata(longitudinal=mental.long,

survival=mental.surv,baseline=mental.baseline,

id.col="id",time.col="time")

summary(mental.joint)



The joineR package

Fitting a joint model

fit<-joint(mental.joint,long.formula=Y~-1+treat+time,

surv.formula=Surv(surv.time,cens.ind)~treat,

model="intslope")

summary(fit)

set.seed(389712)

fit.se <- jointSE(fit, n.boot = 5)

# use much larger number of bootstrap samples in practice

set.seed(54912)

fit.se100 <- jointSE(fit, n.boot = 100,max.it=2000,tol=0.01,

print.detail=TRUE)

fit.se100



Take-home messages

• Correlation matters

• Longitudinal designs address a richer set of questions
than cross-sectional designs

• But also raise challenges in formulating a valid, efficient
analysis:

– what, precisely, is the question?

– what explicit and implicit assumptions does the
proposed method of analysis make?
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